Quantification of Iron-Labeled Cells with Positive Contrast in Mouse Brains

Molecular Imaging and Biology - Tập 13 - Trang 672-678 - 2010
Jean-Christophe Brisset1,2, Monica Sigovan1,2, Fabien Chauveau1,2, Adrien Riou1,2, Emilie Devillard1,3, Virginie Desestret1,2, Monique Touret1,3, Serge Nataf1,3, J. Honnorat1,3, Emmanuelle Canet-Soulas1,2, Norbert Nighoghossian1,2, Yves Berthezene1,2, Marlene Wiart1,2,4
1Université de Lyon, Lyon, France
2CNRS, UMR 5220; Inserm, U 630, Insa de Lyon; Creatis-LRMN, Bron, France
3Inserm U842, NeuroOncologie and NeuroInflammation, Lyon, France
4Laboratoire Creatis-LRMN CNRS-UMR 5220-U 630 Inserm, Service de radiologie (B13), Hopital Neuro-Cardiologique, Bron Cedex, France

Tóm tắt

To quantify small amounts of iron-labeled cells in mouse brains with magnetic resonance imaging (MRI). Iron-labeled cells (from 500 to 7,500) were stereotaxically transplanted into the brain of living mice that were subsequently imaged with MRI at 4.7 T. We compared four quantitative methods: (1) T2 relaxometry, (2) T2* relaxometry, (3) the volume of the cloverleaf hypointense artifact generated on T2*-weighted images, and (4) the volume of the cloverleaf hyperintense artifact generated on positive contrast images. The methods based on relaxometry, whether T2 or T2*, did not correlate with the number of injected cells. By contrast, those based on measurement of cloverleaf artifact volume, whether using negative or positive enhancement, showed a significant linear relationship for the given range of cells (R [0.92–0.95], p < 0.05). T2* artifact volume imaging (negative or positive) appears promising for the quantification of magnetically labeled cells following focal injection in the brain.

Tài liệu tham khảo

Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504 Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53(5):999–1005 Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T (2008) Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 60(3):595–603 Dharmakumar R, Koktzoglou I, Li D (2006) Generating positive contrast from off-resonant spins with steady-state free precession magnetic resonance imaging: theory and proof-of-principle experiments. Phys Med Biol 51(17):4201–4215 Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55(1):126–135 Seppenwoolde JH, Viergever MA, Bakker CJ (2003) Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 50(4):784–790 Stuber M, Gilson WD, Schar M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58(5):1072–1077 Foltz WD, Cunningham CH, Mutsaers AJ, Conolly SM, Stewart DJ, Dick AJ (2006) Positive-contrast imaging in the rabbit hind-limb of transplanted cells bearing endocytosed superparamagnetic beads. J Cardiovasc Magn Reson 8(6):817–823 Gilad AA, Walczak P, McMahon MT, Na HB, Lee JH, An K, Hyeon T, van Zijl PC, Bulte JW (2008) MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles. Magn Reson Med 60(1):1–7 Korosoglou G, Weiss RG, Kedziorek DA, Walczak P, Gilson WD, Schar M, Sosnovik DE, Kraitchman DL, Boston RC, Bulte JW, Weissleder R, Stuber M (2008) Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using “positive contrast” magnetic resonance imaging. J Am Coll Cardiol 52(6):483–491 Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, Fayad ZA (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60(1):73–81 Suzuki Y, Cunningham CH, Noguchi K, Chen IY, Weissman IL, Yeung AC, Robbins RC, Yang PC (2008) In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magn Reson Med 60(6):1269–1275 Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99(25):16267–16272 Brisset JC, Desestret V, Marcellino S, Devillard E, Chauveau F, Lagarde F, Nataf S, Nighoghossian N, Berthezene Y, Wiart M (2009) Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T. Eur Radiol 2:275–285 Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, Scotti G, Martino G, Pluchino S (2007) Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 25(10):2583–2592 Wilhelm C, Gazeau F (2008) Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29(22):3161–3174 Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001–1011 Desestret V, Brisset JC, Moucharrafie S, Devillard E, Nataf S, Honnorat J, Nighoghossian N, Berthezene Y, Wiart M (2009) Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice. Stroke 40(5):1834–1841 Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160 Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48(1):52–61 Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32(6):749–763 Dahnke H, Schaeffter T (2005) Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn Reson Med 53(5):1202–1206 Kuhlpeter R, Dahnke H, Matuszewski L, Persigehl T, von Wallbrunn A, Allkemper T, Heindel WL, Schaeffter T, Bremer C (2007) R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology 245(2):449–457 Liu W, Frank JA (2009) Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 70(2):258–264 Rad AM, Arbab AS, Iskander AS, Jiang Q, Soltanian-Zadeh H (2007) Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J Magn Reson Imaging 26(2):366–374 Seppenwoolde JH, Vincken KL, Bakker CJ (2007) White-marker imaging—separating magnetic susceptibility effects from partial volume effects. Magn Reson Med 58(3):605–609 Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, Panda S, Lu M, Ewing JR, Chopp M (2009) Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J Cereb Blood Flow Metab 3:653–662 Liu W, Dahnke H, Rahmer J, Jordan EK, Frank JA (2009) Ultrashort T2* relaxometry for quantitation of highly concentrated superparamagnetic iron oxide (SPIO) nanoparticle labeled cells. Magn Reson Med 61(4):761–766