Quantification of 3,6-anhydro-galactose in red seaweed polysaccharides and their potential skin-whitening activity

3 Biotech - Tập 10 Số 4 - 2020
Xu-Ting Xie1, Xiao Zhang2, Yang Liu2, Xianqiang Chen3, Kit-Leong Cheong2
11Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, 515063 Guangdong People's Republic of China.
2Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, People’s Republic of China
3Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen H, Wang F, Mao H, Yan X (2014) Degraded λ-carrageenan activates NF-κB and AP-1 pathways in macrophages and enhances LPS-induced TNF-α secretion through AP-1. Biochim Biophys Acta 1840 7:2162–2170. https://doi.org/10.1016/j.bbagen.2014.03.011

Cheong KL, Wu DT, Zhao J, Li SP (2015) A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A 1400:98–106. https://doi.org/10.1016/j.chroma.2015.04.054

Cheong KL, Qiu HM, Du H, Liu Y, Khan BM (2018) Oligosaccharides derived m red seaweed: production, properties, and potential health and cosmetic applications. Molecules 23(10):2451. https://doi.org/10.3390/molecules23102451

Cui M, Wu J, Wang S, Shu H, Zhang M, Liu K, Liu K (2019) Characterization and anti-inflammatory effects of sulfated polysaccharide from the red seaweed Gelidium pacificum Okamura. Int J Biol Macromol 129:377–385. https://doi.org/10.1016/j.ijbiomac.2019.02.043

Hridya H, Amrita A, Sankari M, George Priya Doss C, Gopalakrishnan M, Gopalakrishnan C, Siva R (2015) Inhibitory effect of brazilein on tyrosinase and melanin synthesis: kinetics and in silico approach. Int J Biol Macromol 81:228–234. https://doi.org/10.1016/j.ijbiomac.2015.07.064

Jesumani V, Du H, Pei P, Zheng C, Cheong KL, Huang N (2019) Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property. Int J Biol Macromol 140:216–224. https://doi.org/10.1016/j.ijbiomac.2019.08.027

Jiang Z, Yu G, Liang Y, Song T, Zhu Y, Ni H, Yamaguchi K, Oda T (2019) Inhibitory effects of a sulfated polysaccharide isolated from edible red alga Bangia fusco-purpurea on α-amylase and α-glucosidase. Biosci Biotechnol Biochem 83(11):2065–2074. https://doi.org/10.1080/09168451.2019.1634515

Khan BM, Qiu HM, Wang XF, Liu ZY, Zhang JY, Guo YJ, Chen WZ, Liu Y, Cheong KL (2019) Physicochemical characterization of Gracilaria chouae sulfated polysaccharides and their antioxidant potential. Int J Biol Macromol 134:255–261. https://doi.org/10.1016/j.ijbiomac.2019.05.055

Khan BM, Qiu HM, Xu SY, Liu Y, Cheong KL (2020) Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra haitanensis. Int J Biol Macromol 145:1155–1161. https://doi.org/10.1016/j.ijbiomac.2019.10.040

Kim JH, Yun EJ, Yu S, Kim KH, Kang NJ (2017) Different levels of skin whitening activity among 3,6-anhydro-L-galactose, agarooligosaccharides, and neoagarooligosaccharides. Mar Drugs 15(10):321. https://doi.org/10.3390/md15100321

Kim JH, Lee JE, Kim KH, Kang NJ (2018) Beneficial effects of marine algal-derived carbohydrates for skin health. Mar Drugs 16(11):459. https://doi.org/10.3390/md16110459

Kravchenko AO, Byankina Barabanova AO, Glazunov VP, Yakovleva IM, Yermak IM (2018) Seasonal variations in a polysaccharide composition of Far Eastern red seaweed Ahnfeltiopsis flabelliformis (Phyllophoraceae). J Appl Phycol 30(1):535–545. https://doi.org/10.1007/s10811-017-1262-8

Navarro DA, Stortz CA (2003) Determination of the configuration of 3,6-anhydrogalactose and cyclizable α-galactose 6-sulfate units in red seaweed galactans. Carbohydr Res 338(20):2111–2118. https://doi.org/10.1016/S0008-6215(03)00345-8

Ruocco N, Costantini S, Guariniello S, Costantini M (2016) Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 21(5):551. https://doi.org/10.3390/molecules21050551

Seedevi P, Moovendhan M, Viramani S, Shanmugam A (2017) Bioactive potential and structural chracterization of sulfated polysaccharide from seaweed (Gracilaria corticata). Carbohydr Polym 155:516–524. https://doi.org/10.1016/j.carbpol.2016.09.011

Shanura Fernando IP, Asanka Sanjeewa KK, Samarakoon KW, Kim H-S, Gunasekara UKDSS, Park Y-J, Abeytunga DTU, Lee WW, Jeon Y-J (2018) The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities. J Appl Phycol 30(6):3223–3232. https://doi.org/10.1007/s10811-018-1415-4

Souza BWS, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA, Coimbra MA, Vicente AA (2012) Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloid 27(2):287–292. https://doi.org/10.1016/j.foodhyd.2011.10.005

Sudharsan S, Giji S, Seedevi P, Vairamani S, Shanmugam A (2018) Isolation, characterization and bioactive potential of sulfated galactans from Spyridia hypnoides (Bory) Papenfuss. Int J Biol Macromol 109:589–597. https://doi.org/10.1016/j.ijbiomac.2017.12.097

Thomas NV, Kim SK (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 11(12):146–164

Wang P, Zhao X, Lv Y, Li M, Liu X, Li G, Yu G (2012) Structural and compositional characteristics of hybrid carrageenans from red algal Chondracanthus chamissoi. Carbohydr Polym 89(3):914–919. https://doi.org/10.1016/j.carbpol.2012.04.034

Wijesekara I, Pangestuti R, Kim SK (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algal. Carbohydr Polym 84(1):14–21. https://doi.org/10.1016/j.carbpol.2010.10.062

Xu SY, Huang X, Cheong KL (2017) Recent advances in marine algal polysaccharides: isolation, structure, and activities. Mar Drugs 15(12):388. https://doi.org/10.3390/md15120388

Xu SY, Kan J, Hu Z, Liu Y, Du H, Pang GC, Cheong KL (2018a) Quantification of neoagaro-oligosaccharide production through enzymatic hydrolysis and its anti-oxidant activities. Molecules 23(6):1354. https://doi.org/10.3390/molecules23061354

Xu SY, Liu JP, Huang X, Du LP, Shi FL, Dong R, Huang XT, Zheng K, Liu Y, Cheong KL (2018b) Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel. LWT 90:577–582. https://doi.org/10.1016/j.lwt.2018.01.007

Xu SY, Aweya JJ, Li N, Deng R-Y, Chen W-Y, Tang J, Cheong K-L (2019) Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota. Food Chem 289:177–186. https://doi.org/10.1016/j.foodchem.2019.03.050

Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13(1):143–148. https://doi.org/10.1016/0003-2697(65)90128-4

Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508–514. https://doi.org/10.1042/bj0570508

Yu G, Hu Y, Yang B, Zhao X, Wang P, Ji G, Wu J, Guan H (2010) Extraction, isolation and structural characterization of polysaccharides from a red alga Gloiopeltis furcata. J Ocean Univ 9(2):193–197. https://doi.org/10.1007/s11802-010-0193-7

Yun EJ, Choi IG, Kim KH (2015) Red macroalgal as a sustainable resource for bio-based products. Trends Biotechnol 33(5):247–249. https://doi.org/10.1016/j.tibtech.2015.02.006

Zhang X, Aweya JJ, Huang ZX, Kang ZY, Bai ZH, Li KH, He XT, Liu Y, Chen XQ, Cheong KL (2020) In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydr Polym 234:115894. https://doi.org/10.1016/j.carbpol.2020.115894

Zheng LX, Chen XQ, Cheong KL (2020) Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential. Int J Biol Macromol 151:344–354. https://doi.org/10.1016/j.ijbiomac.2020.02.168