Quality of care in surgical/interventional vascular medicine: what can routinely collected data from the insurance companies achieve?

Frederik Peters1, Thea Kreutzburg1, J Kuchenbecker1, Ursula Marschall2, Marko Remmel3, Mark Dankhoff4, Hans-Heinrich Trute5, Tilman Repgen5, Eike Sebastian Debus1, Christian‐Alexander Behrendt1
1Forschungsgruppe GermanVasc, Klinik und Poliklinik für Gefäßmedizin, Universitäres Herz- und Gefäßzentrum UKE Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
2BARMER Hauptverwaltung, Wuppertal, Germany
3Klinik und Poliklinik für Kardiologie, Universitäres Herz- und Gefäßzentrum UKE Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
4DAK-Gesundheit, Hamburg, Germany
5Fakultät für Rechtswissenschaft, Universität Hamburg, Hamburg, Germany

Tóm tắt

Abstract

The complexity and diversity of surgical/interventional vascular medicine necessitate innovative and pragmatic solutions for the valid measurement of the quality of care in the long term. The secondary utilization of routinely collected data from social insurance institutions has increasingly become the focus of interdisciplinary medicine over the years. Owing to their longitudinal linkage and pan-sector generation, routinely collected data make it possible to answer important questions and can complement quality development projects with primary registry data. Various guidelines exist for their usage, linkage, and reporting. Studies have shown good validity, especially for endpoints with major clinical relevance. The numerous advantages of routinely collected data face several challenges that require thorough plausibility and validity procedures and distinctive methodological expertise. This review presents a discussion of these advantages and challenges and provides recommendations for starting to use this increasingly important source of data.

Từ khóa


Tài liệu tham khảo

Aboyans V, Ricco JB, Bartelink MEL et al (2018) Editor’s choice—2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg 55:305–368

Antes G (2016) Ist das Zeitalter der Kausalität vorbei? Z Evid Fortbild Qual Gesundhwes 112(1):S16–22

Bates DW, Gawande AA (2003) Improving safety with information technology. N Engl J Med 348:2526–2534

Beck AW, Sedrakyan A, Mao J et al (2016) Variations in abdominal aortic aneurysm care: a report from the international consortium of vascular registries. Circulation 134:1948–1958

Behrendt CA (2020) Routinely collected data from health insurance claims and electronic health records in vascular research—a success story and way to go. Vasa 49:85–86

Behrendt CA, Debus ES, Mani K et al (2018) The strengths and limitations of claims based research in countries with fee for service reimbursement. Eur J Vasc Endovasc Surg 56:615–616

Behrendt CA, Debus ES, Schwaneberg T et al (2020) Predictors of bleeding or anemia requiring transfusion in complex endovascular aortic repair and its impact on outcomes in health insurance claims. J Vasc Surg 71:382–389

Behrendt CA, Härter M, Kriston L et al (2017) IDOMENEO – Ist die Versorgungsrealität in der Gefäßmedizin Leitlinien- und Versorgungsgerecht? Gefasschirurgie 22:41–47

Behrendt CA, Heidemann F, Riess HC et al (2017) Registry and health insurance claims data in vascular research and quality improvement. Vasa 46:11–15

Behrendt CA, Peters F, Mani K (2020) The swinging pendulum of evidence—is there a reality behind results from randomized trials and real-world data? Lessons learned from the paclitaxel debate. Eur J Vasc Endovasc Surg. https://doi.org/10.1016/j.ejvs.2020.01.029

Behrendt CA, Pridohl H, Schaar K et al (2017) Clinical registers in the twenty-first century: balancing act between data protection and feasibility? Chirurg 88:944–949

Behrendt CA, Schwaneberg T, Hischke S et al (2020) Data privacy compliant validation of health insurance claims data: the IDOMENEO approach. Gesundheitswesen 82(S 02):S94–S100. https://doi.org/10.1055/a-0883-5098

Behrendt CA, Sedrakyan A, Peters F et al (2020) Editor’s choice—long term survival after femoropopliteal artery revascularisation with paclitaxel coated devices: a propensity score matched cohort analysis. Eur J Vasc Endovasc Surg 59:587–596

Behrendt CA, Sedrakyan A, Schwaneberg T et al (2019) Impact of weekend treatment on short-term and long-term survival after urgent repair of ruptured aortic aneurysms in Germany. J Vasc Surg 69:792–799.e2

Czwikla J, Domhoff D, Giersiepen K (2016) ICD coding quality for outpatient cancer diagnoses in SHI claims data. Z Evid Fortbild Qual Gesundhwes 118–119:48–55

Czwikla J, Jobski K, Schink T (2017) The impact of the lookback period and definition of confirmatory events on the identification of incident cancer cases in administrative data. BMC Med Res Methodol 17:122

Donabedian A (2005) Evaluating the quality of medical care. Milbank Q 83:691–729

Elixhauser A, Steiner C, Harris DR et al (1998) Comorbidity measures for use with administrative data. Med Care 36:8–27

Erler A, Beyer M, Muth C et al (2009) Garbage in – Garbage out? Validität von Abrechnungsdiagnosen in hausärztlichen Praxen. Gesundheitswesen 71:823–831

Ferber LV, Behrens J (1997) Public Health – Forschung mit Gesundheits- und Sozialdaten: Stand und Perspektiven. Memorandum zur Analyse und Nutzung von Gesundheits- und Sozialdaten

Freisinger E, Koeppe J, Gerss J et al (2019) Mortality after use of paclitaxel-based devices in peripheral arteries: a real-world safety analysis. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz698

Gehring S, Eulenfeld R (2018) German medical informatics initiative: unlocking data for research and health care. Methods Inf Med 57:e46–e49

Heidemann F, Kolbel T, Kuchenbecker J et al (2020) Incidence, predictors, and outcomes of spinal cord ischemia in elective complex endovascular aortic repair: an analysis of health insurance claims. J Vasc Surg. https://doi.org/10.1016/j.jvs.2019.10.095

Heidemann F, Peters F, Kuchenbecker J et al (2020) Long-term outcomes after revascularizations below the knee with paclitaxel-coated devices—a propensity score matched cohort analysis. Eur J Vasc Endovasc Surg (In Press)

Hoffmann F, Andersohn F, Giersiepen K et al (2008) Validation of secondary data. Strengths and limitations. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 51:1118–1126

Hoffmann F, Icks A (2012) Structural differences between health insurance funds and their impact on health services research: results from the Bertelsmann health-care monitor. Gesundheitswesen 74:291–297

Ingenerf J (2007) Gesetzliche Krankenversicherung: Der Morbi-RSA soll den Wettbewerb um Gesunde beenden. Dtsch Arztebl Int 104:1564

Katsanos K, Spiliopoulos S, Kitrou P et al (2018) Risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 7:e11245

Katsanos K, Spiliopoulos S, Kitrou P et al (2020) Risk of death and amputation with use of paclitaxel-coated balloons in the infrapopliteal arteries for treatment of critical limb ischemia: a systematic review and meta-analysis of randomized controlled trials. J Vasc Interv Radiol 31:202–212

Kreutzburg T, Peters F, Riess HC et al (2020) Editor’s choice—comorbidity patterns among patients with peripheral arterial occlusive disease in Germany: a trend analysis of health insurance claims data. Eur J Vasc Endovasc Surg 59:59–66

Kriston L (2020) Machine learning’s feet of clay. J Eval Clin Pract 26:373–375

Langner I, Ohlmeier C, Haug U et al (2019) Implementation of an algorithm for the identification of breast cancer deaths in German health insurance claims data: a validation study based on a record linkage with administrative mortality data. BMJ Open 9:e26834

Langner I, Ohlmeier C, Zeeb H et al (2019) Individual mortality information in the German pharmacoepidemiological research database (GepaRD): a validation study using a record linkage with a large cancer registry. BMJ Open 9:e28223

March S, Andrich S, Drepper J et al (2019) Gute Praxis Datenlinkage (GPD). Gesundheitswesen 81:636–650

Mueller U (2000) Die Maßzahlen der Bevölkerungsstatistik. In: Mueller U, Nauck B, Diekmann A (eds) Handbuch der Demographie 1. Springer, Berlin, Heidelberg, pp 1–91

Neubauer S, Schilling T, Zeidler J et al (2016) Auswirkung einer leitliniengerechten Behandlung auf die Mortalität bei Linksherzinsuffizienz. Herz 41:614–624

Neubauer S, Zeidler J, Schilling T et al (2016) Eignung und Anwendung von GKV-Routinedaten zur Überprüfung von Versorgungsleitlinien am Beispiel der Indikation Linksherzinsuffizienz. Gesundheitswesen 78:e135–e144

Ohlmeier C, Langner I, Hillebrand K et al (2015) Mortality in the German pharmacoepidemiological research database (GepaRD) compared to national data in Germany: results from a validation study. BMC Public Health 15:570

Peters F, Kreutzburg T, Kuchenbecker J et al (2020) A retrospective cohort study on the provision and outcomes of pharmacological therapy after revascularization for peripheral arterial occlusive disease: a study protocol. BMJ Surg Interv Health Technol. https://doi.org/10.1136/bmjsit-2019-000020

Peters F, Kreutzburg T, Riess H et al (2020) Optimal pharmacological treatment of symptomatic peripheral arterial occlusive disease and evidence of female patient disadvantage: an analysis of health insurance claims data. Eur J Vasc Endovasc Surg (In Press)

Quan H, Sundararajan V, Halfon P et al (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43:1130–1139

Quiroz JC, Laranjo L, Kocaballi AB et al (2019) Challenges of developing a digital scribe to reduce clinical documentation burden. NPJ Digit Med 2:114

Reinecke H, Unrath M, Freisinger E et al (2015) Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J 36:932–938a

Schneeweiss S, Avorn J (2005) A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol 58:323–337

Schubert I, Ihle P, Köster I (2010) Interne Validierung von Diagnosen in GKV-Routinedaten: Konzeption mit Beispielen und Falldefinition. Gesundheitswesen 72:316–322

Schwaneberg T, Debus ES, Repgen T et al (2019) Entwicklung eines selbstlernenden Risikoscores an Real-World-Datenquellen. Gefässchirurgie 24:234–238

Sedrakyan A, Campbell B, Merino JG et al (2016) IDEAL-D: a rational framework for evaluating and regulating the use of medical devices. BMJ 353:i2372

Sedrakyan A, Cronenwett JL, Venermo M et al (2017) An international vascular registry infrastructure for medical device evaluation and surveillance. J Vasc Surg 65:1220–1222

Swart E, Bitzer E, Gothe H et al (2016) STandardisierte BerichtsROutine für Sekundärdaten Analysen (STROSA) – ein konsentierter Berichtsstandard für Deutschland, Version 2. Gesundheitswesen 78:e145–e160

Swart E, Gothe H, Geyer S et al (2015) Good practice of secondary data analysis (GPS): guidelines and recommendations. Gesundheitswesen 77:120–126

Swart E, Heller G (2007) Nutzung und Bedeutung von (GKV-) Routinedaten für die Versorgungsforschung. Theoretische Ansätze, Methoden, Instrumente und empirische Befunde. In: Janßen C, Borgetto B, Heller G (eds) Medizinsoziologische Versorgungsforschung. Juventa, Weinheim, pp 93–112

Swart E, Ihle P, Gothe H (2014) Routinedaten im Gesundheitswesen: Handbuch Sekundärdatenanalyse: Grundlagen, Methoden, und Perspektiven. Huber, Bern

Swart E, Stallmann C, Powietzka J et al (2014) Datenlinkage von Primär-und Sekundärdaten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 57:180–187

Sweeney L (2012) k‑anonymity: a model for protecting privacy. Int J Uncertainty, Fuzziness Knowledge-Based Syst 10:557–570

Thesmar D, Sraer D, Pinheiro L et al (2019) Combining the power of artificial intelligence with the richness of healthcare claims data: opportunities and challenges. PharmacoEconomics 37:745–752

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser A 58:267–288

Tijssen JG, Kolm P (2016) Demystifying the new statistical recommendations: the use and reporting of p values. J Am Coll Cardiol 68:231–233

Trenner M, Eckstein HH, Kallmayer MA et al (2019) Secondary analysis of statutorily collected routine data. Gefässchirurgie 24:220–227

van Walraven C, Austin PC, Jennings A et al (2009) A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care 47:626–633

Venermo M, Mani K, Kolh P (2017) The quality of a registry based study depends on the quality of the data—without validation, it is questionable. Eur J Vasc Endovasc Surg 53:611–612

Venermo M, Wang G, Sedrakyan A et al (2017) Editor’s choice—carotid stenosis treatment: variation in international practice patterns. Eur J Vasc Endovasc Surg 53:511–519

Zhang X, Faries DE, Li H et al (2018) Addressing unmeasured confounding in comparative observational research. Pharmacoepidemiol Drug Saf 27:373–382