Qualitatively-improved identified parameters of prestressed concrete catenary poles using sensitivity-based Bayesian approach

Results in Engineering - Tập 6 - Trang 100104 - 2020
Feras Alkam1, Isabel Pereira2, Tom Lahmer1
1Institute of Structural Mechanics (ISM), Bauhaus-Universität Weimar, 99423, Germany
2Department of Mathematics, CIDMA, University of Aveiro, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rodgers, 1984, Prestressed concrete poles: state-of-the-art, PCI J., 29, 52, 10.15554/pcij.09011984.52.103

Fouad, 1992, Spun prestressed concrete poles–past, present, and future, Concr. Int., 14, 25

Müller, 2012, Schleuderbetonstützen aus hochfester bewehrung und ultrahochfestem beton: anlässlich des 475-jahr-jubiläums des stahlwerks annahütte, Beton-und Stahlbetonbau, 107, 690, 10.1002/best.201200040

Fouad, 2012, High-strength materials for spun concrete poles, PCI J., 57, 27

Fam, 2008, Development of a novel pole using spun-cast concrete inside glass-fiber-reinforced polymer tubes, PCI J., 53, 100, 10.15554/pcij.05012008.100.113

Kouroussis, 2014, 1

Connolly, 2014, Field testing and analysis of high speed rail vibrations, Soil Dynam. Earthq. Eng., 67, 102, 10.1016/j.soildyn.2014.08.013

Connolly, 2015, Benchmarking railway vibrations–track, vehicle, ground and building effects, Construct. Build. Mater., 92, 64, 10.1016/j.conbuildmat.2014.07.042

Ampunant, 2014, Train–induced aerodynamic pressure and its effect on noise protection walls, 3739

He, 2018, A Numerical Method Based on the Parametric Variational Principle for Simulating the Dynamic Behavior of the Pantograph-Catenary System, Shock Vib., 2018

Van, 2017, Waves, modes and properties with a major impact on dynamic pantograph-catenary interaction, J. Sound Vib., 402, 51, 10.1016/j.jsv.2017.05.008

Pombo, 2012, Influence of pantograph suspension characteristics on the contact quality with the catenary for high speed trains, Comput. Struct., 110, 32, 10.1016/j.compstruc.2012.06.005

Abrahamczyk, 2017, GRK 1462 - reference Project “poles”: monitoring system, lab experiments and long-term measurements

Göbel, 2016, Monitoring the structural response of reinforced concrete poles along high-speed railway tracks, 1

Beck, 1977

Hessling, 2017

Funtowicz, 1990, vol. 15

Bigoni, 2014

Tarantola, 2005

Banks, 2013, Parameter selection methods in inverse problem formulation, 43

Alkam, 2019, Quantifying the uncertainty of identified parameters of prestressed concrete poles using the experimental measurements and different optimization methods, Eng. Appl. Sci., 4, 84

Aster, 2013

Idier, 2013

Marzouk, 2007, Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224, 560, 10.1016/j.jcp.2006.10.010

Simoen, 2013, On prediction error correlation in Bayesian model updating, J. Sound Vib., 332, 4136, 10.1016/j.jsv.2013.03.019

Lei, 2017

Kaipio, 2006, vol. 160

Calvetti, 2007, vol. 2

Gelman, 2014, vol. 2

Nagel, 2016, A unified framework for multilevel uncertainty quantification in Bayesian inverse problems, Probabilist. Eng. Mech., 43, 68, 10.1016/j.probengmech.2015.09.007

Stuart, 2010, Inverse problems: a Bayesian perspective, Acta Numer., 19, 451, 10.1017/S0962492910000061

Bailer-Jones, 2017

Beck, 1998, Updating models and their uncertainties. I: Bayesian statistical framework, J. Eng. Mech., 124, 455, 10.1061/(ASCE)0733-9399(1998)124:4(455)

Bishop, 2006

Gilks, 1995

Hastings, 1970

Chib, 1995, Understanding the metropolis-hastings algorithm, Am. Statistician, 49, 327, 10.1080/00031305.1995.10476177

Ching, 2007, Transitional Markov chain Monte Carlo methods for Bayesian model updating, model class selection, and model averaging, J. Eng. Mech., 133, 816, 10.1061/(ASCE)0733-9399(2007)133:7(816)

Green, 2015, Bayesian and Markov chain Monte Carlo methods for identifying nonlinear systems in the presence of uncertainty, Phil. Trans. R. Soc. A, 373, 10.1098/rsta.2014.0405

Angelikopoulos, 2015, X-TMCMC: Adaptive kriging for Bayesian inverse modeling, Comput. Methods Appl. Mech. Eng., 289, 409, 10.1016/j.cma.2015.01.015

Liang, 2011, vol. 714

Congdon, 2007, vol. 704

Betz, 2016, Transitional Markov chain Monte Carlo: observations and improvements, J. Eng. Mech., 142, 10.1061/(ASCE)EM.1943-7889.0001066

Cheung, 2009, Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters, J. Eng. Mech., 135, 243, 10.1061/(ASCE)0733-9399(2009)135:4(243)

Beck, 2002, Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation, J. Eng. Mech., 128, 380, 10.1061/(ASCE)0733-9399(2002)128:4(380)

Göbel, 2018, Einfluss realer Materialeigenschaften auf numerische Modellvorhersagen: fallstudie Betonmast, Bautechnik, 95, 111, 10.1002/bate.201600091

Brincker, 2015

Brincker, 2006, Understanding stochastic subspace identification, 279

Reynders, 2014

Reynders, 2008, Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis, Mech. Syst. Signal Process., 22, 617, 10.1016/j.ymssp.2007.09.004

Saltelli, 2008

Saltelli, 2004

Rao, 2016

Blevins, 2015

Batikha, 2015, The effect of mechanical properties of masonry on the behavior of FRP-strengthened masonry-infilled RC frame under cyclic load, Compos. Struct., 134, 513, 10.1016/j.compstruct.2015.08.105

Beverly, 2013

Krige, 1951, A statistical approach to some basic mine valuation problems on the witwatersrand, J. Chem. Metall. Min. Soc. S. Afr., 52, 119