Qualitative Study in a Parabolic Equation with Nonstandard Growth Conditions and Singular Medium Void

Fengjie Li1, Xizheng Sun1, Jingli Zhang1
1College of Science, China University of Petroleum, Qingdao, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

Antontsev, S., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52, 19–36 (2006)

Aboulaich, R., Meskine, D., Souissi, A.: New diffusion models in image processing. Comput. Math. Appl. 56, 874–882 (2008)

Antontsev, S., Shmarev, S.: Parabolic equations with anisotropic nonstandard growth conditions. Int. Ser. Numer. Math. 154, 33–44 (2007)

Antontsev, S., Shmarev, S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Mat. 53, 355–399 (2009)

Antontsev, S., Shmarev, S.: Extinction of solutions of parabolic equations with variable anisotropic nonlinearities. Proc. Steklov Inst. Math. 261, 11–22 (2008)

Antontsev, S., Shmarev, S.: Vanishing solutions of anisotropic parabolic equations with variable nonlinearity. J. Math. Anal. Appl. 361, 371–391 (2010)

Badiale, M., Tarantello, G.A.: Sobolev–Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163, 259–293 (2002)

Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19, 581–597 (1992)

Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

Chen, Y.M., Levine, S.E., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

Day, W.A.: Existence of a property of heat equation to linear thermoelasticity and other theories. Q. Appl. Math. 40, 319–330 (1982)

Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics. Springer, Heidelberg (2011)

Ferreira, R., de Pablo, A., Perez-LLanos, M., Rossi, J.D.: Critical exponents for a semilinear parabolic equation with variable reaction. R. Soc. Edinb. Sect. A Math. 142, 1027–1042 (2012)

Fujita, H.: On the blowing up of solutions of the Cauchy problem for $$u_{t}=\Delta u+u^{1+\alpha }$$. J. Fac. Sci. Univ. Tokyo Sect. I(13), 109–124 (1966)

Furter, J., Grinfield, M.: Local vs. nonlocal interactions in populations dynamics. J. Math. Biol. 27, 65–80 (1989)

Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs (1964)

Hu, B.: Blow-Up Theories for Semilinear Parabolic Equations. Springer, Berlin (2011)

Ishii, H.: Asymptotic stability and blowing up of solutions of some nonlinear equations. J. Differ. Equ. 26, 291–319 (1977)

Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

Levine, S., Chen, Y.M., Stanich, J.: Image Restoration Via Nonstandard Diffusion. Department of Mathematics and Computer Science, Duquesne University, Pittsburgh (2004)

Li, F.J., Liu, B.C.: Asymptotic analysis for blow-up solutions in parabolic equations involving variable exponents. Appl. Anal. 92, 651–664 (2013)

Liu, B.C., Yang, J.: Blow-up properties in parabolic problems with anisotropic nonstandard growth conditions. Z. Angew. Math. Phys. 67, 1–26 (2016)

Liu, B.C., Xin, Q.N., Dong, M.Z.: Blow-up analyses in parabolic equations with anisotropic nonstandard damping source. J. Math. Anal. Appl. 458, 242–262 (2018)

Mailly, G.P.: Blow up for reaction diffusion equations under dynamical boundary conditions. Commun. Partial Differ. Equ. 28, 223–247 (2003)

Payne, L.E., Sattinger, D.H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22, 273–303 (1975)

Pinasco, J.P.: Blow-up for parabolic and hyperbolic problems with variable exponents. Nonlinear Anal. 71, 1094–1099 (2009)

Quittner, P., Souplet, P.: Superlinear parabolic problems. blow-up, global existence and steady states. In: Birkhäuser Advanced Texts Basler Lehrbücher book series (BAT) (2019)

Rajagopal, K., Ruzicka, M.: Mathematical modelling of electro-rheological fluids. Contin. Mech. Thermodyn. 13, 59–78 (2001)

Souplet, P.: Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source. J. Differ. Equ. 153, 374–406 (1999)

Tan, Z.: The reaction diffusion equations with special diffusion processes (Chinese). Chin. Ann. Math. 22A, 597–606 (2001)

Tan, Z.: Non-Newton filtration equation with special medium void. Acta Math. Sci. 24B, 118–128 (2004)

Tsutsumi, M.: Existence and nonexistence of global solutions for nonlinear parabolic equations. Publ. Res. Inst. Math. Sci. 73, 211–229 (1972)

Wang, Y.: The existence of global solution and the blowup problem for some p-Laplace heat equations. Acta Math. Sci. 27B, 274–282 (2007)

Wu, X.L., Guo, B., Gao, W.J.: Blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy. Appl. Math. Lett. 26, 539–543 (2013)

Xu, X.J., Ye, Z.: Life span of solutions with large initial data for a class of coupled parabolic systems. Z. Angew. Math. Phys. 64, 705–717 (2013)

Zhou, J.: A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void. Appl. Math. Lett. 30, 6–11 (2014)