Quadratically Nonlinear Cylindrical Hyperelastic Waves: Primary Analysis of Evolution
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], Vol. 1, Naukova Dumka, Kiev (1987).
V. I. Erofeev, Wave Processes in Solids with Microstructure [in Russian], Izd. Mosk. Univ., Moscow (1999).
L. K. Zarembo and V. A. Krasil'nikov, An Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).
V. V. Krylov and V. A. Krasil'nikov, An Introduction to Physical Acoustics [in Russian], Nauka, Moscow (1986).
A. I. Lur'e, Theory of Elasticity [in Russian], Nauka, Moscow (1970).
J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. im S. P. Timoshenka, Kiev (1998).
L. I. Sedov, Continuum Mechanics [in Russian], Vols. 1 and 2, Nauka, Moscow (1970).
C. Cattani and J. J. Rushchitsky, “Cubically nonlinear elastic waves: Wave equations and methods of analysis,” Int. Appl. Mech., 39, No.10, 1115–1145 (2003).
C. Cattani and J. J. Rushchitsky, “Cubically nonlinear versus quadratically elastic waves: Main wave effects,” Int. Appl. Mech., 39, No.12, 1361–1399 (2003).
D. S. Drumheller, Introduction to Wave Propagation in Nonlinear Fluids and Solids, Cambridge Univ. Press, Cambridge (1998).
I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro-and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No.7, 785–793 (2004).
I. A. Guz and J. J. Rushchitsky, “Theoretical description of a delamination mechanism in fibrous micro-and nanocomposites,” Int. Appl. Mech., 40, No.10, 1129–1136 (2004).
A. Kratzer and W. Franz, Traanscendente Funktionen, Akademische Verlagsgesellschaft, Leipzig (1960).
W. Nowacki, Theory of Elasticity [in Polish], PWN, Warsaw (1970).
F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York (1974).
J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge Univ. Press, Cambridge (1999).
J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for plane-strain state,” Int. Appl. Mech., 41, No.5, 496–505 (2005).