Quadratic minimization with portfolio and terminal wealth constraints

Springer Science and Business Media LLC - Tập 11 Số 2 - Trang 243-282 - 2015
Andrew J. Heunis1
1Department of Statistics and Actuarial Sciences, University of Waterloo, Waterloo, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Berlin: Springer (2006)

Aubin, J.P.: Applied Functional Analysis. New York: Wiley (1978)

Bielecki, T.R., Jin, H., Pliska, S.R., Zhou, X.Y.: Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math Financ 15, 213–244 (2005)

Bismut, J.M.: Conjugate convex functions in optimal stochastic control. J Math Anal Appl 44, 384–404 (1973)

Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales, 2nd edn. New York: Springer (1988)

Coqueret, G.: Diversified minimum variance portfolios. Ann Financ (to appear) (2014)

Cvitanić, J., Karatzas, I.: Convex duality in constrained portfolio optimization. Ann Appl Probab 2, 767–818 (1992)

Dubovitskii, A.Ya., Mil’yutin, A.A.: Necessary conditions for a weak extremum in problems of optimal control with mixed inequality constraints. Zhur Vychislitel Mat i Mat-Fys 8, 725–779 (1968)

Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Amsterdam: North-Holland (1976)

Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of optimal control problems with state constraints. SIAM Rev 37, 181–218 (1995)

Ioffe, A.D., Levin, V.L.: Subdifferentials of convex functions. Trans Moscow Math Soc 26, 1–72 (1972)

Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. New York: Springer (1998)

Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. New York: Dover (1975)

Korn, R.: Some applications of $$L_{2}$$ L 2 -hedging with a non-negative wealth process. Appl Math Financ 4, 65–79 (1997)

Korn, R., Trautmann, S.: Continuous-time portfolio optimization under terminal wealth constraints. ZOR Math Methods Oper Res 42, 69–92 (1995)

Labbé, C., Heunis, A.J.: Convex duality in constrained mean-variance portfolio optimization. Adv Appl Probab 39, 77–104 (2007)

Makowski, K., Neustadt, L.W.: Optimal control with mixed control-phase variable equality and inequality constraints. SIAM J Control Optim 12, 184–228 (1974)

Rockafellar, R.T.: Integrals which are convex functionals. Pac J Math 24, 525–539 (1968)

Rockafellar, R.T.: Convex Analysis. Princeton: Princeton University Press (1970)

Rockafellar, R.T.: Integrals which are convex functionals II. Pac J Math 39, 439–469 (1971)

Rockafellar, R.T.: State constraints in convex control problems of Bolza. SIAM J Control Optim 10, 691–715 (1972)

Rockafellar, R.T.: Conjugate Duality and Optimization (CBMS-NSF Ser No 16). Philadelphia: SIAM (1974)

Rockafellar, R.T., Wets, J.B.: Stochastic convex programming: singular multipliers and extended duality. Pac J Math 62, 507–522 (1976)

Schweizer, M.: Mean-variance hedging for general claims. Ann Appl Probab 2, 171–179 (1992)

Schweizer, M.: Approximating random variables by stochastic integrals. Ann Probab 22, 1536–1575 (1994)

Schweizer, M.: Approximation pricing and the variance-optimal martingale measure. Ann Probab 24, 206–236 (1996)

Xu, G.L., Shreve, S.E.: A duality method for optimal consumption and investment under short-selling prohibition. I. General market coefficients. Ann Appl Probab 2, 87–112 (1992)

Yosida, K., Hewitt, E.: Finitely additive measures. Trans Am Math Soc 72, 46–66 (1952)

Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Berlin: Springer (1997)