Kéo dài QTc ở bệnh nhân COVID-19 sử dụng Chloroquine

Cardiovascular Toxicology - Tập 21 - Trang 314-321 - 2021
Matthijs L. Becker1,2, Dominic Snijders3, Claudia W. van Gemeren4, Hylke Jan Kingma1,2, Steven F. L. van Lelyveld5, Thijs J. Giezen1,2
1Pharmacy Foundation of Haarlem Hospitals, Haarlem, The Netherlands
2Department of Hospital Pharmacy, Spaarne Gasthuis, Hoofddorp, The Netherlands
3Department of Pulmonary Disease, Spaarne Gasthuis, Hoofddorp, The Netherlands
4Intensive Care Unit, Spaarne Gasthuis, Hoofddorp, The Netherlands
5Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands

Tóm tắt

Chloroquine được sử dụng để điều trị cho bệnh nhân nhiễm COVID-19, mặc dù chưa có bằng chứng rõ ràng cho thấy nó có tác dụng tích cực. Chloroquine được biết đến là làm kéo dài khoảng QRS và QTc trên điện tâm đồ (ECG). Để đánh giá tác động của chloroquine lên khoảng QRS và QTc ở bệnh nhân COVID-19, chúng tôi đã đưa vào nghiên cứu tất cả bệnh nhân nội trú được điều trị bằng chloroquine cho COVID-19 tại Bệnh viện Spaarne Gasthuis (Haarlem/Hoofddorp, Hà Lan) và có thực hiện ECG cả trong 72 giờ trước và trong hoặc ít nhất 48 giờ sau khi điều trị. Chúng tôi đã phân tích (sự thay đổi của) khoảng QRS và QTc bằng cách sử dụng kiểm định t một mẫu. Trong số 106 bệnh nhân được điều trị bằng chloroquine, 70 người đạt tiêu chí đưa vào nghiên cứu. Thay đổi trung bình của khoảng QRS là 6.0 ms (95% CI 3.3–8.7) và thay đổi trung bình của khoảng QTc là 32.6 ms (95% CI 24.9–40.2) đã được hiệu chỉnh theo công thức Bazett và 38.1 ms (95% CI 30.4–45.9) đã được hiệu chỉnh theo công thức Fridericia. Trong 19 trong số 70 bệnh nhân (27%), khoảng QTc ở trên 500 ms sau khi bắt đầu điều trị chloroquine hoặc thay đổi khoảng QTc vượt quá 60 ms. Nhịp tim trên 90 bpm, suy thận và khoảng QTc dưới 450 ms là các yếu tố nguy cơ kéo dài khoảng QTc. Chloroquine làm kéo dài khoảng QTc ở một số lượng bệnh nhân đáng kể, có khả năng gây ra rối loạn nhịp tim. Do không có bằng chứng rõ ràng về tác dụng tích cực của chloroquine, những kết quả này không khuyến khích việc sử dụng chloroquine ở bệnh nhân COVID-19.

Từ khóa

#Chloroquine #COVID-19 #QTc interval #ECG #heart rhythm disturbances

Tài liệu tham khảo

Wang, M., Cao, R., Zhang, L., et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30, 269–271. Yao, X., Ye, F., Zhang, M., et al. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciaa237. Huang, M., Tang, T., Pang, P., et al. (2020). Treating COVID-19 with chloroquine. Journal of Molecular Cell Biology, 12, 322–325. Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends, 14, 72–73. Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA. https://doi.org/10.1001/jama.2020.6019. Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S. (2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care, 57, 279–283. Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., et al. (2020). Hydroxychloroquine with or without azithromycin in mild-to-moderate covid-19. The New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2019014. Borba, M. G. S., Val, F. F. A., Sampaio, V. S., et al. (2020). Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Network Open, 3(4), e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857. Jankelson, L., Karam, G., Becker, M. L., Chinitz, L. A., & Tsai, M. (2020). QT prolongation, torsades de pointes and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: A systematic review. Heart Rhythm, S1547–5271(20), 30431–30438. Stichting Werkgroep Antibioticabeleid. (2020). Medicamenteuze behandelopties bij patiënten met COVID-19 (infecties met SARS-CoV-2). [Medical treatment options in patients with COVID-19 (infection with SARS-CoV-2)]. Retrieved April 21, 2020, from https://swab.nl/nl/covid-19. Nederlandse Vereniging voor Intensive Care. Handreiking infecties met COVID-19 op de intensive care– nr. 4. [Guide infectionswith COVID-19 on the intensive care nr. 4]. Retrieved April 21, 2020, from https://nvic.nl/sites/nvic.nl/files/20200316%20Update%204%20-%20Handreiking%20infecties_3.pdf. Alhazzani, W., Møller, M. H., Arabi, Y. M., et al. (2020). Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Medicine. https://doi.org/10.1007/s00134-020-06022-5. White, N. J. (2007). Cardiotoxicity of antimalarial drugs. The Lancet Infectious Diseases, 7, 549–558. Smit, C., Peeters, M. Y. M., van den Anker, J. N., & Knibbe, C. A. J. (2020). Chloroquine for SARS-CoV-2: Implications of its unique pharmacokinetic and safety properties. Clinical Pharmacokinetics. https://doi.org/10.1007/s40262-020-00891-1. Heemskerk, C. P., Pereboom, M., van Stralen, K., et al. (2018). Risk factors for QTc interval prolongation. European Journal of Clinical Pharmacology, 74, 183–191. Tosaki, A. (2020). ArrhythmoGenoPharmacoTherapy. Frontiers in Pharmacology, 11, 616. https://doi.org/10.3389/fphar.2020.00616. Lentini, G., Cavalluzzi, M. M., & Habtemariam, S. (2020). COVID-19, chloroquine repurposing, and cardiac safety concern: Chirality might help. Molecules, 25(8), 1834. https://doi.org/10.3390/molecules25081834. Li, G., Sun, J., Li, Y., Shi, Y., Zhao, J., Zhang, T. Y., & Zhang, X. (2020). Enantiomers of chloroquine and hydroxychloroquine exhibit different activities against SARS-CoV-2 in vitro, evidencing s-hydroxychloroquine as a potentially superior drug for COVID-19. bioRxiv. https://doi.org/10.1101/2020.05.26.114033. Lakkireddy, D. R., Chung, M. K., Gopinathannair, R., et al. (2020). Guidance for cardiac electrophysiology during the coronavirus (COVID-19) pandemic from the heart rhythm society COVID-19 task force; electrophysiology section of the American College of Cardiology; and the electrocardiography and arrhythmias committee of the council on clinical cardiology, American Heart Association. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2020.03.028. Wu, C. I., Postema, P. G., Arbelo, E., et al. (2020). SARS-CoV-2, COVID-19 and inherited arrhythmia syndromes. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2020.03.024. Woosley, RL and Romero, KA. QT drug list. Retrieved April 15, 2020, from http://www.Crediblemedsorg/. Bazett, H. C. (1920). An analysis of the time-relations of the electrocardiograms. Heart, 7, 353–370. Fridericia, L. S. (1920). Die systolendauer im elektrokardiogramm bei normalen menschen und bei herzkranken. Acta Medica Scandinavica, 53, 469–486. Heemskerk, C. P., Woldman, E., Pereboom, M., et al. (2017). Ciprofloxacin does not prolong the QTc interval: A clinical study in ICU patients and review of the literature. Journal of Pharmacy and Pharmaceutical Sciences, 20, 360–364. Schrijver, E. J., Verstraaten, M., van de Ven, P. M., et al. (2018). Low dose oral haloperidol does not prolong QTc interval in older acutely hospitalised adults: A subanalysis of a randomised double-blind placebo-controlled study. Journal of Geriatric Cardiology, 15, 401–407. European Medicines Agency. ICH Topic E14 the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Retrieved April 23, 2020, from https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-14-clinical-evaluation-qt/qts-interval-prolongation-proarrhythmic-potential-non-antiarrhythmic-drugs-step-5_en.pdf. Blom, M. T., Bardai, A., van Munster, B. C., et al. (2011). Differential changes in QTc duration during in-hospital haloperidol use. PLoS ONE, 6, e23728. Vancura, V., Wichterle, D., Ulc, I., et al. (2017). The variability of automated QRS duration measurement. Europace, 19, 636–643. Looareesuwan, S., White, N. J., Chanthavanich, P., et al. (1986). Cardiovascular toxicity and distribution kinetics of intravenous chloroquine. British Journal of Clinical Pharmacology, 22, 31–36. Mzayek, F., Deng, H., Mather, F. J., et al. (2007). Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers. PLoS Clinical Trials, 2, e6. Cook, J. A., Randinitis, E. J., Bramson, C. R., & Wesche, D. L. (2006). Lack of a pharmacokinetic interaction between azithromycin and chloroquine. American Journal of Tropical Medicine and Hygiene, 74, 407–412. van den Broek, M. P. H., Möhlmann, J. E., Abeln, B. G. S., et al. (2020). Chloroquine-induced QTc prolongation in COVID-19 patients. Netherlands Heart Journal, 28(7–8), 406–409. https://doi.org/10.1007/s12471-020-01429-7. Sinkeler, F. S., Berger, F. A., Muntinga, H. J., et al. (2020). The risk of QTc-interval prolongation in COVID-19 patients treated with chloroquine. Netherlands Heart Journal, 28(7–8), 418–423. https://doi.org/10.1007/s12471-020-01462-6. Mercuro, N. J., Yen, C. F., Shim, D. J., et al. (2020). Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. https://doi.org/10.1001/jamacardio.2020.1834. Saleh, M., Gabriels, J., Chang, D., et al. (2020). Effect of chloroquine, hydroxychloroquine, and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circulation: Arrhythmia and Electrophysiology, 13(6), e008662. https://doi.org/10.1161/CIRCEP.120.008662. Sridhar, A. R., Chatterjee, N. A., Saour, B., et al. (2020). QT interval and arrhythmic safety of hydroxychloroquine monotherapy in coronavirus disease 2019. Heart Rhythm O2, 1(3), 167–172. https://doi.org/10.1016/j.hroo.2020.06.002. Beigel, J. H., Tomashek, K. M., Dodd, L. E., et al. (2020). Remdesivir for the treatment of covid-19—final report. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2007764. Wang, Y., Zhang, D., Du, G., et al. (2020). Remdesivir in adults with severe COVID-19: A randomised double-blind, placebo-controlled, multicentre trial. The Lancet, 395(10236), 1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9. Spinner, C. D., Gottlieb, R. L., Criner, G. J., et al. (2020). Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA, 324(11), 1048–1057. https://doi.org/10.1001/jama.2020.16349. Horby, P., Shen Lim, W., Emberson, J. R., et al. (2020). Dexamethasone in hospitalized patients with covid-19—preliminary report. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2021436. Vandenberk, B., Vandael, E., Robyns, T., et al. (2016). Which QT correction formulae to use for QT monitoring? Journal of the American Heart Association, 5(6), e003264. https://doi.org/10.1161/JAHA.116.003264. Postema, P. G., De Jong, J. S., Van der Bilt, I. A., & Wilde, A. A. (2008). Accurate electrocardiographic assessment of the QT interval: Teach the tangent. Heart Rhythm, 5, 1015–1018.