Q-switched 2µm thulium bismuth co-doped fiber laser with multi-walled carbon nanotubes saturable absorber
Tài liệu tham khảo
Ravindran, 2003, Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications, Nano Lett., 3, 447, 10.1021/nl0259683
Ahmed, 2014, All fiber mode-locked erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber, Opt. Laser Technol., 62, 40, 10.1016/j.optlastec.2014.02.012
Tatsuura, 2003, Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications, Adv. Mater., 15, 534, 10.1002/adma.200390125
Chow, 2010, Four-wave-mixing-based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide, Opt. Lett., 35, 2070, 10.1364/OL.35.002070
Sun, 2010, A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser, Nano Res., 3, 653, 10.1007/s12274-010-0026-4
Chu, 2013, A passively Q-switched Yb:YAG laser with a single-walled carbon nanotube saturable absorber, Laser Phys., 23, 065002, 10.1088/1054-660X/23/6/065002
Costa, 2008, Characterization of carbon nanotubes by Raman spectroscopy, Mater. Sci. Pol., 26, 433
Dresselhaus, 2005, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409, 47, 10.1016/j.physrep.2004.10.006
Esawi, 2007, Carbon nanotube reinforced composites: potential and current challenges, Mater. Des., 28, 2394, 10.1016/j.matdes.2006.09.022
Ramadurai, 2008, High-performance carbon nanotube coatings for high-power laser radiometry, J. Appl. Phys., 103, 013103, 10.1063/1.2825647
Banhart, 1999, Irradiation effects in carbon nanostructures, Rep. Prog. Phys., 62, 1181, 10.1088/0034-4885/62/8/201
Lin, 2013, Multi-walled carbon nanotube as a saturable absorber for a passively mode-locked Nd: YVO4 laser, Laser Phys. Lett., 10, 055805, 10.1088/1612-2011/10/5/055805
K., Scholle, S., Lamrini, P., Koopmann, P., Fuhrberg, 2010. 2µm Laser sources and their possible applications.
Nelson, 1997, Ultrashort-pulse fiber ring lasers, Appl. Phys. B: Lasers Opt., 65, 277, 10.1007/s003400050273
Sharp, 1996, 190-fs passively mode-locked thulium fiber laser with a low threshold, Opt. Lett., 21, 881, 10.1364/OL.21.000881
Engelbrecht, 2008, Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3nJ, Opt. Lett., 33, 690, 10.1364/OL.33.000690
F., Wang, F., Torrisi, Z., Jiang, D., Popa, T., Hasan, Z., Sun, W., Cho, A., Ferrari, Graphene passively Q-switched two-micron fiber lasers, Paper presented at the Quantum Electronics and Laser Science Conference, 2012.
Jiang, 2013, A graphene Q-switched nanosecond Tm-doped fiber laser at 2µm, Laser Phys. Lett., 10, 055103, 10.1088/1612-2011/10/5/055103
Clarkson, 2002, High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090nm., Opt. Lett., 27, 1989, 10.1364/OL.27.001989
Nilsson, 2004, High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers., Opt. Fiber Technol., 10, 5, 10.1016/j.yofte.2003.07.001
Halder, 2014, Thulium bismuth co-doped fiber lasers at 1901nm by 802nm pumping. Selected topics in quantum electronics, IEEE J., 20, 1
Saidin, 2014, Q-switched thulium-doped fibre laser operating at 1900nm using multi-walled carbon nanotubes saturable absorber, J. Eng., 10.1049/joe.2014.0038
Zdrojek, 2004, Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy, Solid State Phenom., 99, 265, 10.4028/www.scientific.net/SSP.99-100.265
Spühler, 1999, Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers, JOSA B, 16, 376, 10.1364/JOSAB.16.000376
Ahmad, 2014, Q-switched fibre laser using 21cm bismuth-erbium doped fibre and graphene oxide as saturable absorber, Opt. Commun., 310, 53, 10.1016/j.optcom.2013.07.053
Keller, 2003, Recent developments in compact ultrafast lasers, Nature, 424, 831, 10.1038/nature01938