Q-TARO: QTL Annotation Rice Online Database

Rice - 2010
Jun‐ichi Yonemaru1, Tetsuro Yamamoto1, Shuichi Fukuoka1, Yusaku Uga1, Kiyosumi Hori1, Masahiro Yano1
1QTL Genomics Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan

Tóm tắt

Abstract Over the past two decades, genetic dissection of complex phenotypes of economic and biological interest has revealed the chromosomal locations of many quantitative trait loci (QTLs) in rice and their contributions to phenotypic variation. Mapping resolution has varied considerably among QTL studies owing to differences in population size and number of DNA markers used. Additionally, the same QTLs have often been reported with different locus designations. This situation has made it difficult to determine allelic relationships among QTLs and to compare their positions. To facilitate reliable comparisons of rice QTLs, we extracted QTL information from published research papers and constructed a database of 1,051 representative QTLs, which we classified into 21 trait categories. This database (QTL Annotation Rice Online database; Q-TARO, http://qtaro.abr.affrc.go.jp/) consists of two web interfaces. One interface is a table containing information on the mapping of each QTL and its genetic parameters. The other interface is a genome viewer for viewing genomic locations of the QTLs. Q-TARO clearly displays the co-localization of QTLs and distribution of QTL clusters on the rice genome.

Từ khóa


Tài liệu tham khảo

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

Armstead IP, Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D. Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol. 2008;178:559–71.

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al. Cytokinin oxidase regulates rice grain production. Science. 2005;309:741–5.

Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science. 2009;325:998–1001.

Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics. 2000;155:463–73.

Guiderdoni E, Galinato E, Luistro J, Vergara G. Anther culture of tropical japonica × indica hybrids of rice (Oryza sativa L.). Euphytica. 1992;62:219–24.

Hori K, Yamamoto T, Ebana K, Takeuchi Y, Yano M. A novel quantitative trait locus, qCL1, involved in semi-dwarfism derived from Japanese rice cultivar Nipponbare. Breed Sci. 2009;59:285–95.

Hori K, Sugimoto K, Nonoue Y, Ono N, Matsubara K, Yamanouchi U, et al. Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theor Appl Genet. 2010;120:1547–57.

International Rice Genome Sequencing Project (IRGSP). The map-based sequence of the rice genome. Nature. 2005;436:793–800.

Jiang H, Dian W, Liu F, Wu P. Molecular cloning and expression analysis of three genes encoding starch synthase II in rice. Planta. 2004;218:1062–70.

Jo YK, Barker R, Pfender W, Warnke S, Sim SC, Jung G. Comparative analysis of multiple disease resistance in ryegrass and cereal crops. Theor Appl Genet. 2008;117:531–43.

Kobayashi A, Tomita K. QTL detection for stickiness of cooked rice using recombinant inbred lines derived from crosses between japonica rice cultivars. Breed Sci. 2008;58:419–26.

Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 2002;43:1096–105.

Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science. 2006a;311:1936–9.

Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol. 2006b;170:185–93.

Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet. 2008;117:935–45.

McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA. 2009;106:12273–8.

Monna L, Lin X, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet. 2002;104:772–8.

Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, et al (2009) Gramene QTL database: development, content and applications. Database bap005

Okagaki RJ. Nucleotide sequence of a long cDNA from the rice waxy gene. Plant Mol Biol. 1992;19:513–6.

Rice Annotation Project (RAP), Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, et al. The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res. 2008;36:D1028–33.

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, et al. A mutant gibberellin-synthesis gene in rice. Nature. 2002;416:701–2.

Schuler GD. Sequence mapping by electronic PCR. Genome Res. 1997;7:541–50.

Sweeney M, McCouch S. The complex history of the domestication of rice. Ann Bot. 2007;100:951–7.

Takeuchi Y, Hori K, Suzuki K, Nonoue Y, Takemoto-Kuno Y, Maeda H, et al. Major QTLs for eating quality of an elite Japanese rice cultivar, Koshihikari, on the short arm of chromosome 3. Breed Sci. 2008;58:437–45.

Veyrieras JB, Goffinet B, Charcosset A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics. 2007;8:49.

Wada T, Ogata T, Tsubone M, Uchimura Y, Matsue Y. Mapping of QTLs for eating quality and physicochemical properties of the japonica rice “Koshihikari”. Breed Sci. 2008;58:427–35.

Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ. Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics. 2005;169:2277–93.

Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, et al. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet. 2008;116:613–22.

Yamamoto T, Yonemaru J-i, Yano M. Towards the understanding of complex traits in rice: substantially or superficially? DNA Res. 2009;16:141–54.

Yamamoto T, Nagasaki H, J-i Y, Ebana K, Nakajima M, Shibaya T, et al. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics. 2010;11:267.

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell. 2000;12:2473–84.

Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA. 1997;94:9226–31.

Yu B, Lin Z, Li H, Li X, Li J, Wang Y, et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 2007;52:891–8.

Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics. 2004;271:402–15.