Beeby, 2006, Meas. Sci. Technol., 17, R175, 10.1088/0957-0233/17/12/R01
Hunter, 2012, Proc. SPIE, 8377, 83770D, 10.1117/12.920978
A. Khodayari , S.Mohammadi and D.Guyomar, Pyroelectric energy harvesting: fundamentals and applications, VDM Publishing, 2011
Clingman, 1961, J. Appl. Phys., 32, 675, 10.1063/1.1736069
Fatuzzo, 1966, J. Appl. Phys., 37, 510, 10.1063/1.1708205
Hoh, 1963, Proc. IEEE, 51, 838, 10.1109/PROC.1963.2277
van der Ziel, 1974, J. Appl. Phys., 45, 4128, 10.1063/1.1663926
J. E. Drummond , Dielectric power conversion, in Energy 10; Annual Intersociety Energy Conversion and Engineering Conference, Newark, 1975, pp. 569–575
Childress, 1962, J. Appl. Phys., 33, 1793, 10.1063/1.1728833
Drummond, 1980, Ferroelectrics, 27, 215, 10.1080/00150198008226102
Whatmore, 1986, Rep. Prog. Phys., 49, 1335, 10.1088/0034-4885/49/12/002
Lang, 2005, Phys. Today, 58, 31, 10.1063/1.2062916
Erhart, 2013, Phys. Educ., 48, 438, 10.1088/0031-9120/48/4/438
S. B. Lang and D. K.Das-Gupta, Pyroelectricity: Fundamentals and Applications, in Handbook of Advanced Electronic and Photonic Materials and Devices, ed. H. S. Nalwa, Academic Press, 2001, vol. 4, pp. 1–54
Lang, 2006, Appl. Phys. A: Mater. Sci. Process., 85, 125, 10.1007/s00339-006-3688-8
Lang, 1974, Ferroelectrics, 7, 231, 10.1080/00150197408238004
Lubomirsky, 2012, Rev. Sci. Instrum., 83, 051101, 10.1063/1.4709621
Lingam, 2013, Int. J. Smart Nano Mater., 4, 229, 10.1080/19475411.2013.872207
L. B. Kong , et al., Waste energy harvesting: Mechanical and thermal energies, Springer, London, 1994
Kepler, 1978, Annu. Rev. Phys. Chem., 29, 497, 10.1146/annurev.pc.29.100178.002433
Li, 2013, Phys. Chem. Chem. Phys., 15, 20786, 10.1039/c3cp52501e
Lee, 2012, Appl. Therm. Eng., 37, 30, 10.1016/j.applthermaleng.2011.12.034
McKinley, 2012, Smart Mater. Struct., 21, 035015, 10.1088/0964-1726/21/3/035015
Navid, 2010, Int. J. Heat Mass Transfer, 53, 4060, 10.1016/j.ijheatmasstransfer.2010.05.025
Micropelt, http://www.micropelt.com/technology.php
Marlow Industries, Inc., https://www.marlow.com
Guyomar, 2009, International Journal of Applied Electromagnetics and Mechanics, 31, 41, 10.3233/JAE-2009-1045
Xie, 2010, J. Intell. Mater. Syst. Struct., 21, 243, 10.1177/1045389X09352818
G. Cha and Y.Jia, High power density pyroelectric energy harversting incorporating switchable liquid-based thermal interfaces, in IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, pp. 1241–1244
H. Maiwa , Y.Ishizone and W.Sakamoto, Thermal and vibrational energy harvesting using PZT- and BT-based ceramics, in IEEE, Applications of Ferroelectrics, Aviero, 2012, pp. 1–4
Sebald, 2009, Smart Mater. Struct., 18, 125006, 10.1088/0964-1726/18/12/125006
Khodayari, 2009, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 693, 10.1109/TUFFC.2009.1092
Potnuru, 2014, Integr. Ferroelectr., 150, 23, 10.1080/10584587.2014.873319
Batra, 2011, Proc. SPIE, 8035, 803519, 10.1117/12.884333
Mane, 2011, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 10, 10.1109/TUFFC.2011.1769
Cuadras, 2010, Sens. Actuators, A, 158, 132, 10.1016/j.sna.2009.12.018
Navid, 2011, Smart Mater. Struct., 20, 025012, 10.1088/0964-1726/20/2/025012
Li, 2013, J. Mater. Chem., 1, 23
Zook, 1978, J. Appl. Phys., 49, 4604, 10.1063/1.325442
Yang, 2012, Nano Lett., 12, 2833, 10.1021/nl3003039
Chang, 2010, Smart Mater. Struct., 19, 065018, 10.1088/0964-1726/19/6/065018
Chang, 2009, J. Appl. Phys., 106, 014101, 10.1063/1.3158472
Sebald, 2008, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 538, 10.1109/TUFFC.2008.680
Sebald, 2006, J. Appl. Phys., 100, 124112, 10.1063/1.2407271
Mangalam, 2013, ACS Appl. Mater. Interfaces, 5, 13235, 10.1021/am404228c
Ravindran, 2011, Appl. Phys. Lett., 99, 104102, 10.1063/1.3633350
S. K. T. Ravindran , T.Huesgen, M.Kroener, and P.Woias, A self-sustaining pyroelectric energy harvester utilizing spatial thermal gradients, in Solid-State Sensors, Actuators and Microsystems Conference, Beijing, 2011, pp. 657–660
Navid, 2010, Smart Mater. Struct., 19, 055006, 10.1088/0964-1726/19/5/055006
Loiacono, 1982, J. Cryst. Growth, 60, 29, 10.1016/0022-0248(82)90169-5
Marsilius, 2012, Adv. Funct. Mater., 22, 797, 10.1002/adfm.201101301
Yu, 2010, J. Electroceram., 24, 1, 10.1007/s10832-007-9360-7
McKinley, 2013, Appl. Phys. Lett., 102, 023906, 10.1063/1.4776668
Ravindran, 2011, Appl. Phys. Lett., 99, 104102, 10.1063/1.3633350
Sebald, 2008, Smart Mater. Struct., 17, 015012, 10.1088/0964-1726/17/01/015012
Kandilian, 2011, Smart Mater. Struct., 20, 055020, 10.1088/0964-1726/20/5/055020
J. Xie , P. P.Mane, C. W.Green, K. M.Mossi and K. K.Leang, Energy harvesting by pyroelectric effect using PZT, in Proc. ASME Conf. Smart Materials, Adaptive Strucutre, Intelligent Systems, Maryland, 2008, pp. 273–277
Yang, 2012, ACS Nano, 6, 8456, 10.1021/nn303414u
A. Cuadras , M.Gasulla, A.Ghisla and V.Ferrari, Energy harvesting from PZT pyroelectric cells, in IMTC 2006 Intrumentation and Measurement Technology Conference, Sorrento, 2006, pp. 1668–1672
Dalola, 2010, Procedia Eng., 5, 685, 10.1016/j.proeng.2010.09.202
U. Erturun , R.Waxman, C.Green, M. L.Richeson and K.Mossi, Energy scavenging combining piezoelectric and pyroelectric effects, in ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Philadelphia, 2010
Hsiao, 2012, Sensors, 12, 534, 10.3390/s120100534
Krishnan, 2014, IEEE Trans. Sustainable Energy, 5, 73, 10.1109/TSTE.2013.2273980
Kotipalli, 2010, Appl. Phys. Lett., 97, 124102, 10.1063/1.3491843
Yang, 2012, Nano Lett., 12, 6408, 10.1021/nl303755m
Erturun, 2014, Journal of Intelligent Material Systems and Structures, 10.1177/1045389X14533432
Lee, 2012, Smart Mater. Struct., 21, 025021, 10.1088/0964-1726/21/2/025021
Chin, 2012, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 2373, 10.1109/TUFFC.2012.2470
Lee, 2013, Smart Mater. Struct., 22, 025038, 10.1088/0964-1726/22/2/025038
Vats, 2014, J. Appl. Phys., 115, 013505, 10.1063/1.4861031
Peng, 2005, Mater. Lett., 59, 1576, 10.1016/j.matlet.2005.01.026
Sun, 2014, J. Appl. Phys., 115, 074101, 10.1063/1.4866327
Huang, 2012, Sens. Actuators, B, 169, 208, 10.1016/j.snb.2012.04.068
S. Bhattacharjee , A. K.Batra and J.Cain, Energy harvesting from pavements using pyroelectric single crystal and nano-composite based smart materials, in First Congress of Transportation and Development Institute (TDI), Chicago, 2011, pp. 741–750
Naranjo, 2005, Nature, 434, 1115, 10.1038/nature03575
V. A. Borisenok , A. S.Koshelev and E. Z.Novitsky, Pyroelectric materials for converters of pulsed ionizing radiation energy into electric power, Bull. Russ. Acad. Sci.: Phys., 1996, vol. 60, pp. 1660–1662
Saito, 2004, Nature, 432, 84, 10.1038/nature03028
Kumar, 2014, Journal of Asian Ceramic Societies, 2, 138, 10.1016/j.jascer.2014.02.001
Sharma, 2014, Int. J. Appl. Ceram. Technol., 10.1111/ijac.12231
Yang, 2012, Adv. Mater., 24, 5357, 10.1002/adma.201201414
Nguyen, 2010, Appl. Therm. Eng., 30, 2127, 10.1016/j.applthermaleng.2010.05.022
Olsen, 1985, J. Appl. Phys., 58, 2854, 10.1063/1.335857
Olsen, 1985, J. Appl. Phys., 57, 5036, 10.1063/1.335280
Kouchachvili, 2007, J. Electrost., 65, 182, 10.1016/j.elstat.2006.07.014
Nguyen, 2010, Appl. Therm. Eng., 30, 2127, 10.1016/j.applthermaleng.2010.05.022
Yang, 2013, ACS Nano, 7, 785, 10.1021/nn305247x
Batra, 2014, Adv. Sci., Eng. Med., 6, 708, 10.1166/asem.2014.1551
Olsen, 1985, J. Appl. Phys., 58, 4709, 10.1063/1.336244
Sebald, 2008, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 538, 10.1109/TUFFC.2008.680
Guyomar, 2009, J. Intell. Mater. Syst. Struct., 20, 265, 10.1177/1045389X08093564
Mohammadi, 2011, International Journal of Mechanical and Materials Engineering, 6, 167
D. Guyomar and M.Lallart, Energy conversion improvement in ferroelectrics: application to energy harvesting and self-powered systems, in IEEE Ultrasonics Symposium (IUS), Rome, 2009, pp. 1–10
Olsen, 1982, J. Energy, 6, 91, 10.2514/3.62580
Olsen, 1981, Ferroelectrics, 38, 975, 10.1080/00150198108209595
Olsen, 1982, Ferroelectrics, 40, 17, 10.1080/00150198208210592
Olsen, 1983, J. Appl. Phys., 54, 5941, 10.1063/1.331769
Yu, 2007, International Journal of Electrical Power & Energy Systems, 27, 407
Zhu, 2009, J. Appl. Phys., 106, 124102, 10.1063/1.3271144
Mohammadi, 2012, Smart Mater. Res., 2012, 160956
Ikura, 2002, Ferroelectrics, 267, 403, 10.1080/713715909
Vanderpool, 2008, Int. J. Heat Mass Transfer, 51, 5052, 10.1016/j.ijheatmasstransfer.2008.04.008
Kouchachvili, 2008, Int. J. Energy Res., 32, 328, 10.1002/er.1361
Moreno, 2012, Int. J. Heat Mass Transfer, 55, 4301, 10.1016/j.ijheatmasstransfer.2012.03.075
R. B. Olsen and D. A.Bruno, Pyroelectric conversion materials, in ECEC '86; Proceedings of the Twenty-first Intersociety Energy Conversion Engineering Conference, San Diego, 1986, pp. 89–93
Guyomar, 2008, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 279, 10.1109/TUFFC.2008.646
Cha, 2012, Smart Mater. Struct., 21, 022001, 10.1088/0964-1726/21/2/022001
Olsen, 1984, Ferroelectrics, 59, 205, 10.1080/00150198408240091
McKinley, 2014, Appl. Energy, 126, 78, 10.1016/j.apenergy.2014.03.069
Cha, 2013, Sens. Actuators, A, 189, 100, 10.1016/j.sna.2012.09.019
Guyomar, 2009, J. Intell. Mater. Syst. Struct., 20, 609, 10.1177/1045389X08096888
M. Amokrane , A.Baysse, B.Nogarede and M.Rguiti, Low-voltage active diode rectifier for pyroelectric harvesting cell, in IECON 2012, 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, 2012, pp. 1055–1060
C. Richard , D.Guyomar, D.Audigier, and G.Ching, Semi passive damping using continuous switching of a piezoelectric device I, in Proc. SPIE Smart Struct. and Mat. Conf., Passive Damping and Isolation, San Diego, 1999, vol. 3672, p. 104
C. Richard , D.Guyomar, D.Audigier and H.Bassaler, Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor, in Proc. SPIE Smart Struct. and Mat. Conf., Passive Damping and Isolation, 2000, vol. 3989, p. 288
Badel, 2005, Journal of Intelligent Materials Systems and Structures, 16, 889, 10.1177/1045389X05053150
Fang, 2010, J. Heat Transfer, 132, 092701, 10.1115/1.4001634
Hsiao, 2011, Sensors, 11, 10458, 10.3390/s111110458
Hsiao, 2013, Sensors, 13, 12113, 10.3390/s130912113
Wei, 2006, Sens. Actuators, A, 128, 18, 10.1016/j.sna.2005.12.044
Morozovska, 2010, J. Appl. Phys., 108, 042009, 10.1063/1.3474964
Agrawal, 2011, Nano Lett., 11, 786, 10.1021/nl104004d
Lee, 2014, Adv. Mater., 26, 765, 10.1002/adma.201303570
Goudarzi1, 2013, Mater. Phys. Mech., 16, 55
Mostafa, 2011, Mater. Res. Soc. Symp. Proc., 1325, 159, 10.1557/opl.2011.1255
Hunter, 2011, Proc. SPIE, 8035, 80350V, 10.1117/12.882125
Huesgen, 2010, J. Micromech. Microeng., 20, 104004, 10.1088/0960-1317/20/10/104004
S. K. T. Ravindran , T.Huesgen, M.Kroener and P.Woias, A self-sustaining pyroelectric energy harvester utilizing spatial thermal gradients, in Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Beijing, 2011, pp. 657–660
McKay, 2013, Energy, 57, 632, 10.1016/j.energy.2013.05.045
L. Carlioz , J.Delamare and S.Basrour, Temperature threshold tuning of a thermal harvesting switch, in Solid State Sensors, Actuators and Microsystems Conference, Denver, 2009, pp. 1385–1388
Gong, 2012, Nanotechnology, 23, 335401, 10.1088/0957-4484/23/33/335401
Zhang, 2011, Sens. Actuators, A, 168, 335, 10.1016/j.sna.2011.04.045
Lukasiewicz, 2008, J. Cryst. Growth, 310, 1464, 10.1016/j.jcrysgro.2007.11.233
J. G. Webster and E.Halit, Measurement, Instrumentation and Sensors Handbook, CRC Press, 2014
Zhang, 2013, Appl. Phys. Lett., 102, 102908, 10.1063/1.4795795
Lau, 2008, J. Appl. Phys., 103, 104105, 10.1063/1.2927252
Bowen, 2014, Energy Environ. Sci., 7, 25, 10.1039/C3EE42454E
G. Hyseni , N.Caka, and K.Hysen, Infrared thermal detectors parameters: Semiconductor bolometers versus pyroelectrics, WSEAS Transactions on circuits and systems, 2010, 9, pp. 238–247
He, 2004, Thermochim. Acta, 419, 135, 10.1016/j.tca.2004.02.008
Özgür, 2006, J. Electron. Mater., 35, 550, 10.1007/s11664-006-0098-9
Huang, 2011, Physica B, 406, 818, 10.1016/j.physb.2010.11.099
Mintres Material Data Sheet, http://www.mintres.com/pdf%5Cdia19.pdf, 2014
M. Pecht , et al., Electronic Packaging Materials and Their Properties, CRC Press, 1999
Glaw, 1993, J. Nonlinear Opt. Phys. Mater., 2, 209, 10.1142/S0218199193000127
D. S. Ginley and D.Cahen, Fundamentals of Materials for Energy and Environmental Sustainability, 2012
Wu, 2007, J. Appl. Phys., 101, 113712, 10.1063/1.2745286
Vats, 2014, Int. J. Appl. Ceram. Technol., 10.1111/ijac.12214
Chauhan, 2014, Energy Technology, 2, 205, 10.1002/ente.201300138
Vats, 2014, J. Appl. Phys., 115, 013505, 10.1063/1.4861031
Vats, 2014, Materials Research Express, 1, 015503, 10.1088/2053-1591/1/1/015503
Zhu, 2011, Appl. Phys. Lett., 98, 222901, 10.1063/1.3595325