Pyroelectric materials and devices for energy harvesting applications

Energy and Environmental Science - Tập 7 Số 12 - Trang 3836-3856
Chris Bowen1, J. Taylor2, E. LeBoulbar2,1, Daniel Zabek1, Aditya Chauhan3, Rahul Vaish3
1Department of Mechanical Engineering, University of Bath, Bath, UK
2Department of Electrical and Electronic Engineering, University of Bath, Bath, UK
3School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beeby, 2006, Meas. Sci. Technol., 17, R175, 10.1088/0957-0233/17/12/R01

Hunter, 2012, Proc. SPIE, 8377, 83770D, 10.1117/12.920978

A. Khodayari , S.Mohammadi and D.Guyomar, Pyroelectric energy harvesting: fundamentals and applications, VDM Publishing, 2011

Clingman, 1961, J. Appl. Phys., 32, 675, 10.1063/1.1736069

Fatuzzo, 1966, J. Appl. Phys., 37, 510, 10.1063/1.1708205

Hoh, 1963, Proc. IEEE, 51, 838, 10.1109/PROC.1963.2277

van der Ziel, 1974, J. Appl. Phys., 45, 4128, 10.1063/1.1663926

J. E. Drummond , Dielectric power conversion, in Energy 10; Annual Intersociety Energy Conversion and Engineering Conference, Newark, 1975, pp. 569–575

Childress, 1962, J. Appl. Phys., 33, 1793, 10.1063/1.1728833

Drummond, 1980, Ferroelectrics, 27, 215, 10.1080/00150198008226102

Whatmore, 1986, Rep. Prog. Phys., 49, 1335, 10.1088/0034-4885/49/12/002

Lang, 2005, Phys. Today, 58, 31, 10.1063/1.2062916

Erhart, 2013, Phys. Educ., 48, 438, 10.1088/0031-9120/48/4/438

S. B. Lang and D. K.Das-Gupta, Pyroelectricity: Fundamentals and Applications, in Handbook of Advanced Electronic and Photonic Materials and Devices, ed. H. S. Nalwa, Academic Press, 2001, vol. 4, pp. 1–54

Lang, 2006, Appl. Phys. A: Mater. Sci. Process., 85, 125, 10.1007/s00339-006-3688-8

Lang, 1974, Ferroelectrics, 7, 231, 10.1080/00150197408238004

Lubomirsky, 2012, Rev. Sci. Instrum., 83, 051101, 10.1063/1.4709621

Lingam, 2013, Int. J. Smart Nano Mater., 4, 229, 10.1080/19475411.2013.872207

L. B. Kong , et al., Waste energy harvesting: Mechanical and thermal energies, Springer, London, 1994

Kepler, 1978, Annu. Rev. Phys. Chem., 29, 497, 10.1146/annurev.pc.29.100178.002433

Li, 2013, Phys. Chem. Chem. Phys., 15, 20786, 10.1039/c3cp52501e

Lee, 2012, Appl. Therm. Eng., 37, 30, 10.1016/j.applthermaleng.2011.12.034

McKinley, 2012, Smart Mater. Struct., 21, 035015, 10.1088/0964-1726/21/3/035015

Navid, 2010, Int. J. Heat Mass Transfer, 53, 4060, 10.1016/j.ijheatmasstransfer.2010.05.025

Micropelt, http://www.micropelt.com/technology.php

Marlow Industries, Inc., https://www.marlow.com

Guyomar, 2009, International Journal of Applied Electromagnetics and Mechanics, 31, 41, 10.3233/JAE-2009-1045

Xie, 2010, J. Intell. Mater. Syst. Struct., 21, 243, 10.1177/1045389X09352818

G. Cha and Y.Jia, High power density pyroelectric energy harversting incorporating switchable liquid-based thermal interfaces, in IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, pp. 1241–1244

H. Maiwa , Y.Ishizone and W.Sakamoto, Thermal and vibrational energy harvesting using PZT- and BT-based ceramics, in IEEE, Applications of Ferroelectrics, Aviero, 2012, pp. 1–4

Sebald, 2009, Smart Mater. Struct., 18, 125006, 10.1088/0964-1726/18/12/125006

Khodayari, 2009, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 693, 10.1109/TUFFC.2009.1092

Potnuru, 2014, Integr. Ferroelectr., 150, 23, 10.1080/10584587.2014.873319

Batra, 2011, Proc. SPIE, 8035, 803519, 10.1117/12.884333

Mane, 2011, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 10, 10.1109/TUFFC.2011.1769

Cuadras, 2010, Sens. Actuators, A, 158, 132, 10.1016/j.sna.2009.12.018

Navid, 2011, Smart Mater. Struct., 20, 025012, 10.1088/0964-1726/20/2/025012

Li, 2013, J. Mater. Chem., 1, 23

Zook, 1978, J. Appl. Phys., 49, 4604, 10.1063/1.325442

Yang, 2012, Nano Lett., 12, 2833, 10.1021/nl3003039

Chang, 2010, Smart Mater. Struct., 19, 065018, 10.1088/0964-1726/19/6/065018

Chang, 2009, J. Appl. Phys., 106, 014101, 10.1063/1.3158472

Sebald, 2008, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 538, 10.1109/TUFFC.2008.680

Sebald, 2006, J. Appl. Phys., 100, 124112, 10.1063/1.2407271

Mangalam, 2013, ACS Appl. Mater. Interfaces, 5, 13235, 10.1021/am404228c

Ravindran, 2011, Appl. Phys. Lett., 99, 104102, 10.1063/1.3633350

S. K. T. Ravindran , T.Huesgen, M.Kroener, and P.Woias, A self-sustaining pyroelectric energy harvester utilizing spatial thermal gradients, in Solid-State Sensors, Actuators and Microsystems Conference, Beijing, 2011, pp. 657–660

Navid, 2010, Smart Mater. Struct., 19, 055006, 10.1088/0964-1726/19/5/055006

Loiacono, 1982, J. Cryst. Growth, 60, 29, 10.1016/0022-0248(82)90169-5

Marsilius, 2012, Adv. Funct. Mater., 22, 797, 10.1002/adfm.201101301

Yu, 2010, J. Electroceram., 24, 1, 10.1007/s10832-007-9360-7

McKinley, 2013, Appl. Phys. Lett., 102, 023906, 10.1063/1.4776668

Ravindran, 2011, Appl. Phys. Lett., 99, 104102, 10.1063/1.3633350

Sebald, 2008, Smart Mater. Struct., 17, 015012, 10.1088/0964-1726/17/01/015012

Kandilian, 2011, Smart Mater. Struct., 20, 055020, 10.1088/0964-1726/20/5/055020

J. Xie , P. P.Mane, C. W.Green, K. M.Mossi and K. K.Leang, Energy harvesting by pyroelectric effect using PZT, in Proc. ASME Conf. Smart Materials, Adaptive Strucutre, Intelligent Systems, Maryland, 2008, pp. 273–277

Yang, 2012, ACS Nano, 6, 8456, 10.1021/nn303414u

A. Cuadras , M.Gasulla, A.Ghisla and V.Ferrari, Energy harvesting from PZT pyroelectric cells, in IMTC 2006 Intrumentation and Measurement Technology Conference, Sorrento, 2006, pp. 1668–1672

Dalola, 2010, Procedia Eng., 5, 685, 10.1016/j.proeng.2010.09.202

U. Erturun , R.Waxman, C.Green, M. L.Richeson and K.Mossi, Energy scavenging combining piezoelectric and pyroelectric effects, in ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Philadelphia, 2010

Hsiao, 2012, Sensors, 12, 534, 10.3390/s120100534

Krishnan, 2014, IEEE Trans. Sustainable Energy, 5, 73, 10.1109/TSTE.2013.2273980

Kotipalli, 2010, Appl. Phys. Lett., 97, 124102, 10.1063/1.3491843

Yang, 2012, Nano Lett., 12, 6408, 10.1021/nl303755m

Erturun, 2014, Journal of Intelligent Material Systems and Structures, 10.1177/1045389X14533432

Lee, 2012, Smart Mater. Struct., 21, 025021, 10.1088/0964-1726/21/2/025021

Chin, 2012, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 2373, 10.1109/TUFFC.2012.2470

Lee, 2013, Smart Mater. Struct., 22, 025038, 10.1088/0964-1726/22/2/025038

Vats, 2014, J. Appl. Phys., 115, 013505, 10.1063/1.4861031

Peng, 2005, Mater. Lett., 59, 1576, 10.1016/j.matlet.2005.01.026

Sun, 2014, J. Appl. Phys., 115, 074101, 10.1063/1.4866327

Huang, 2012, Sens. Actuators, B, 169, 208, 10.1016/j.snb.2012.04.068

S. Bhattacharjee , A. K.Batra and J.Cain, Energy harvesting from pavements using pyroelectric single crystal and nano-composite based smart materials, in First Congress of Transportation and Development Institute (TDI), Chicago, 2011, pp. 741–750

Naranjo, 2005, Nature, 434, 1115, 10.1038/nature03575

V. A. Borisenok , A. S.Koshelev and E. Z.Novitsky, Pyroelectric materials for converters of pulsed ionizing radiation energy into electric power, Bull. Russ. Acad. Sci.: Phys., 1996, vol. 60, pp. 1660–1662

Saito, 2004, Nature, 432, 84, 10.1038/nature03028

Kumar, 2014, Journal of Asian Ceramic Societies, 2, 138, 10.1016/j.jascer.2014.02.001

Sharma, 2014, Int. J. Appl. Ceram. Technol., 10.1111/ijac.12231

Yang, 2012, Adv. Mater., 24, 5357, 10.1002/adma.201201414

Nguyen, 2010, Appl. Therm. Eng., 30, 2127, 10.1016/j.applthermaleng.2010.05.022

Olsen, 1985, J. Appl. Phys., 58, 2854, 10.1063/1.335857

Olsen, 1985, J. Appl. Phys., 57, 5036, 10.1063/1.335280

Kouchachvili, 2007, J. Electrost., 65, 182, 10.1016/j.elstat.2006.07.014

Nguyen, 2010, Appl. Therm. Eng., 30, 2127, 10.1016/j.applthermaleng.2010.05.022

Yang, 2013, ACS Nano, 7, 785, 10.1021/nn305247x

Batra, 2014, Adv. Sci., Eng. Med., 6, 708, 10.1166/asem.2014.1551

Olsen, 1985, J. Appl. Phys., 58, 4709, 10.1063/1.336244

Sebald, 2008, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 538, 10.1109/TUFFC.2008.680

Guyomar, 2009, J. Intell. Mater. Syst. Struct., 20, 265, 10.1177/1045389X08093564

Mohammadi, 2011, International Journal of Mechanical and Materials Engineering, 6, 167

D. Guyomar and M.Lallart, Energy conversion improvement in ferroelectrics: application to energy harvesting and self-powered systems, in IEEE Ultrasonics Symposium (IUS), Rome, 2009, pp. 1–10

Olsen, 1982, J. Energy, 6, 91, 10.2514/3.62580

Olsen, 1981, Ferroelectrics, 38, 975, 10.1080/00150198108209595

Olsen, 1982, Ferroelectrics, 40, 17, 10.1080/00150198208210592

Olsen, 1983, J. Appl. Phys., 54, 5941, 10.1063/1.331769

Yu, 2007, International Journal of Electrical Power & Energy Systems, 27, 407

Zhu, 2009, J. Appl. Phys., 106, 124102, 10.1063/1.3271144

Mohammadi, 2012, Smart Mater. Res., 2012, 160956

Ikura, 2002, Ferroelectrics, 267, 403, 10.1080/713715909

Vanderpool, 2008, Int. J. Heat Mass Transfer, 51, 5052, 10.1016/j.ijheatmasstransfer.2008.04.008

Kouchachvili, 2008, Int. J. Energy Res., 32, 328, 10.1002/er.1361

Moreno, 2012, Int. J. Heat Mass Transfer, 55, 4301, 10.1016/j.ijheatmasstransfer.2012.03.075

R. B. Olsen and D. A.Bruno, Pyroelectric conversion materials, in ECEC '86; Proceedings of the Twenty-first Intersociety Energy Conversion Engineering Conference, San Diego, 1986, pp. 89–93

Guyomar, 2008, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 279, 10.1109/TUFFC.2008.646

Cha, 2012, Smart Mater. Struct., 21, 022001, 10.1088/0964-1726/21/2/022001

Olsen, 1984, Ferroelectrics, 59, 205, 10.1080/00150198408240091

McKinley, 2014, Appl. Energy, 126, 78, 10.1016/j.apenergy.2014.03.069

Cha, 2013, Sens. Actuators, A, 189, 100, 10.1016/j.sna.2012.09.019

Guyomar, 2009, J. Intell. Mater. Syst. Struct., 20, 609, 10.1177/1045389X08096888

M. Amokrane , A.Baysse, B.Nogarede and M.Rguiti, Low-voltage active diode rectifier for pyroelectric harvesting cell, in IECON 2012, 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, 2012, pp. 1055–1060

C. Richard , D.Guyomar, D.Audigier, and G.Ching, Semi passive damping using continuous switching of a piezoelectric device I, in Proc. SPIE Smart Struct. and Mat. Conf., Passive Damping and Isolation, San Diego, 1999, vol. 3672, p. 104

C. Richard , D.Guyomar, D.Audigier and H.Bassaler, Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor, in Proc. SPIE Smart Struct. and Mat. Conf., Passive Damping and Isolation, 2000, vol. 3989, p. 288

Badel, 2005, Journal of Intelligent Materials Systems and Structures, 16, 889, 10.1177/1045389X05053150

Fang, 2010, J. Heat Transfer, 132, 092701, 10.1115/1.4001634

Hsiao, 2011, Sensors, 11, 10458, 10.3390/s111110458

Hsiao, 2013, Sensors, 13, 12113, 10.3390/s130912113

Wei, 2006, Sens. Actuators, A, 128, 18, 10.1016/j.sna.2005.12.044

Morozovska, 2010, J. Appl. Phys., 108, 042009, 10.1063/1.3474964

Agrawal, 2011, Nano Lett., 11, 786, 10.1021/nl104004d

Lee, 2014, Adv. Mater., 26, 765, 10.1002/adma.201303570

Goudarzi1, 2013, Mater. Phys. Mech., 16, 55

Mostafa, 2011, Mater. Res. Soc. Symp. Proc., 1325, 159, 10.1557/opl.2011.1255

Hunter, 2011, Proc. SPIE, 8035, 80350V, 10.1117/12.882125

Huesgen, 2010, J. Micromech. Microeng., 20, 104004, 10.1088/0960-1317/20/10/104004

S. K. T. Ravindran , T.Huesgen, M.Kroener and P.Woias, A self-sustaining pyroelectric energy harvester utilizing spatial thermal gradients, in Solid-State Sensors, Actuators and Microsystems Conference (Transducers), Beijing, 2011, pp. 657–660

McKay, 2013, Energy, 57, 632, 10.1016/j.energy.2013.05.045

L. Carlioz , J.Delamare and S.Basrour, Temperature threshold tuning of a thermal harvesting switch, in Solid State Sensors, Actuators and Microsystems Conference, Denver, 2009, pp. 1385–1388

Gong, 2012, Nanotechnology, 23, 335401, 10.1088/0957-4484/23/33/335401

Zhang, 2011, Sens. Actuators, A, 168, 335, 10.1016/j.sna.2011.04.045

Lukasiewicz, 2008, J. Cryst. Growth, 310, 1464, 10.1016/j.jcrysgro.2007.11.233

J. G. Webster and E.Halit, Measurement, Instrumentation and Sensors Handbook, CRC Press, 2014

Zhang, 2013, Appl. Phys. Lett., 102, 102908, 10.1063/1.4795795

Lau, 2008, J. Appl. Phys., 103, 104105, 10.1063/1.2927252

Bowen, 2014, Energy Environ. Sci., 7, 25, 10.1039/C3EE42454E

G. Hyseni , N.Caka, and K.Hysen, Infrared thermal detectors parameters: Semiconductor bolometers versus pyroelectrics, WSEAS Transactions on circuits and systems, 2010, 9, pp. 238–247

He, 2004, Thermochim. Acta, 419, 135, 10.1016/j.tca.2004.02.008

Özgür, 2006, J. Electron. Mater., 35, 550, 10.1007/s11664-006-0098-9

Huang, 2011, Physica B, 406, 818, 10.1016/j.physb.2010.11.099

Mintres Material Data Sheet, http://www.mintres.com/pdf%5Cdia19.pdf, 2014

M. Pecht , et al., Electronic Packaging Materials and Their Properties, CRC Press, 1999

Glaw, 1993, J. Nonlinear Opt. Phys. Mater., 2, 209, 10.1142/S0218199193000127

D. S. Ginley and D.Cahen, Fundamentals of Materials for Energy and Environmental Sustainability, 2012

Wu, 2007, J. Appl. Phys., 101, 113712, 10.1063/1.2745286

Vats, 2014, Int. J. Appl. Ceram. Technol., 10.1111/ijac.12214

Chauhan, 2014, Energy Technology, 2, 205, 10.1002/ente.201300138

Vats, 2014, J. Appl. Phys., 115, 013505, 10.1063/1.4861031

Vats, 2014, Materials Research Express, 1, 015503, 10.1088/2053-1591/1/1/015503

Zhu, 2011, Appl. Phys. Lett., 98, 222901, 10.1063/1.3595325