Pygidial gland secretions of Carabus Linnaeus, 1758 (Coleoptera: Carabidae): chemicals released by three species

Nikola Vesović1, Srećko Ćurčić1, Marina Todosijević2, Marija Nenadić1, Wang Zhang3, Ljubodrag Vujisić2
1Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
2Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
3State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adachi Y, Kanehisa K, Tsumuki H (1985) Catabolic formation of methacrylic acid and tiglic acid from the branched chain amino acids in the pygidial defensive glands of Carabus yaconinus Bates (Coleoptera: Carabidae). Appl Entomol Zool 20:492–493. https://doi.org/10.1303/aez.20.492

Attygalle AB, Meinwald J, Liebherr JK, Eisner T (1991) Sexual dimorphism in the defensive secretion of a carabid beetle. Experientia 47:296–299. https://doi.org/10.1007/BF01958165

Attygalle AB, Wu X, Ruzicka J, Rao S, Garcia S, Herath K, Meinwald J, Maddison DR, Will KW (2004) Defensive chemicals of two species of Trachypachus Motschulski. J Chem Ecol 30:577–588. https://doi.org/10.1023/B:JOEC.0000018630.79922.94

Attygalle AB, Wu X, Maddison DR, Will KW (2009) Orange/lemon-scented beetles: opposite enantiomers of limonene as major constituents in the defensive secretion of related carabids. Naturwissenschaften 96:1443–1449. https://doi.org/10.1007/s00114-009-0596-8

Balestrazzi E, Dazzini Valcurone ML, De Bernardi M, Vidari G, Vita-Finzi P, Mellerio G (1985) Morphological and chemical studies on the pygidial defence glands of some Carabidae (Coleoptera). Naturwissenschaften 72:482–484. https://doi.org/10.1007/BF00441073

Benn MH, Lencucha A, Maxie S, Telang SA (1973) The pygidial defensive secretion of Carabus taedatus. J Insect Physiol 19:2173–2176. https://doi.org/10.1016/0022-1910(73)90132-7

Bergmann J (2002) Identifizierung und Synthese flüchtiger Inhaltsstoffe aus Insekten. Doctoral dissertation, Institut für organische Chemie, Universität Hamburg, Hamburg

Blum MS (1981) Chemical defenses of arthropods. Academic Press, New York

Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374. https://doi.org/10.1146/annurev.en.41.010196.002033

Burger BV, Munro Z, Röth M, Geertsema LH, Habich A (1986) The chemical nature of the adult defensive secretion of the tip wilter, Elasmopoda valga. Insect Biochem 16:687–690. https://doi.org/10.1016/0020-1790(86)90012-0

Burkhardt F, Smith S (eds) (1987) The correspondence of Charles Darwin, vol 3. Cambridge University Press, Cambridge, pp 1844–1846

Classen R, Dettner K (1983) Pygidial defensive titer and population structure of Agabus bipustulatus L. and Agabus paludosus F. (Coleoptera, Dytiscidae). J Chem Ecol 9:201–209. https://doi.org/10.1007/BF00988037

Dettner K, Reissenweber F (1991) The defensive secretion of Omaliinae and Proteininae (Coleoptera: Staphylinidae): its chemistry, biological and taxonomic significance. Biochem Syst Ecol 19:291–303. https://doi.org/10.1016/0305-1978(91)90017-T

Deuve T, Cruaud A, Genson G, Rasplus J-Y (2012) Molecular systematics and evolutionary history of the genus Carabus (Col. Carabidae). Mol Phylogenet Evol 65:259–275. https://doi.org/10.1016/j.ympev.2012.06.015

Di Giulio A, Muzzi M, Romani R (2015) Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae). Arthropod Struct Dev 44:468–490. https://doi.org/10.1016/j.asd.2015.08.013

Dierckx F (1899) Structure et fonctionnement de la grande défensive chez genre Brachynus: note à propos des observations de M. Bordas. Zool Anz 22:154–157

Dierckx F (1901) Les glandes pygidiennes des Coléoptères (seconde mémoire): Carabides (Bombardiers, etc.), Paussides, Cicindelides, Staphylinides. La Cellule 18:255–310

Forsyth DJ (1970) The ultrastructure of the pygidial defence glands of Pterostichus madidus F. J Morphol 131:397–416. https://doi.org/10.1002/jmor.1051310404

Forsyth DJ (1972) The structure of pygidial defence glands of Carabidae (Coleoptera). Trans Zool Soc Lond 32:249–309. https://doi.org/10.1111/j.1096-3642.1972.tb00029.x

Giglio A, Brandmayr P, Talarico F, Zetto Brandmayr T (2011) Current knowledge on exocrine glands in carabid beetles: structure, function and chemical compounds. ZooKeys 100:193–201. https://doi.org/10.3897/zookeys.100.1527

Holliday AE, Mattingly TM, Toro AA, Donald LJ, Holliday NJ (2016) Age- and sex-related variation in defensive secretions of adult Chlaenius cordicollis and evidence for their role in sexual communication. Chemoecology 26:107–119. https://doi.org/10.1007/s00049-016-0210-4

Kanehisa K, Murase M (1977) Comparative study of the pygidial defensive systems of carabid beetles. Appl Entomol Zool 12:225–235. https://doi.org/10.1303/aez.12.225

Lečić S, Ćurčić S, Vujisić L, Ćurčić B, Ćurčić N, Nikolić Z, Anđelković B, Milosavljević S, Tešević V, Makarov S (2014) Defensive secretion in three ground-beetle species (Insecta: Coleoptera: Carabidae). Ann Zool Fenn 51:285–300. https://doi.org/10.5735/086.051.0301

Makarov SE, Vujisić LV, Ćurčić BPM, Ilić BS, Tešević VV, Vajs VE, Vučković IM, Mitić BM, Lučić LR, Đorđević IŽ (2012) Chemical defense in the cave-dwelling millipede Brachydesmus troglobius Daday, 1889 (Diplopoda, Polydesmidae). Int J Speleol 41:95–100. https://doi.org/10.5038/1827-806X.41.1.10

Moore BP (1979) Chemical defence in carabids and its bearing on phylogeny. In: Erwin TL, Ball GE, Whitehead DR (eds) Carabid beetles: their evolution, natural history and classification. Dr. W. Junk, London, pp 193–203

Moore BP, Wallbank BE (1968) Chemical composition of the defensive secretion in carabid beetles and its importance as a taxonomic character. Proc R Soc B Biol Sci 37:62–72. https://doi.org/10.1111/j.1365-3113.1968.tb00199.x

Muzzi M, Moore W, Di Guilio A (2019) Morpho-functional analysis of the explosive defensive system of basal bombardier beetles (Carabidae: Paussinae: Metriini). Micron 119:24–38. https://doi.org/10.1016/j.micron.2019.01.003

Nenadić M, Soković M, Glamočlija J, Ćirić A, Perić-Mataruga V, Ilijin L, Tešević V, Vujisić L, Todosijević M, Vesović N, Ćurčić S (2016) Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae). Sci Nat 103:34. https://doi.org/10.1007/s00114-016-1358-z

Pasteels JM, Grégoire J-C, Rowell-Rahier M (1983) The chemical ecology of defense in arthropods. Annu Rev Entomol 28:263–289. https://doi.org/10.1146/annurev.en.28.010183.001403

Roach B, Dodge KR, Aneshansley DJ, Wiemer D, Meinwald J, Eisner T (1979) Chemistry of defensive secretions of ozaenine and paussine bombardier beetles (Coleoptera: Carabidae). Coleopt Bull 33:17–19

Rork AM, Renner T (2018) Carabidae semiochemistry: current and future directions. J Chem Ecol 44:1069–1083. https://doi.org/10.1007/s10886-018-1011-8

Rork AM, Mikó I, Renner T (2019) Pygidial glands of Harpalus pensylvanicus (Coleoptera: Carabidae) contain resilin-rich structures. Arthropod Struct Dev 49:19–25. https://doi.org/10.1016/j.asd.2018.12.004

Schildknecht H (1970) The defensive chemistry of land and water beetles. Angew Chem Int Ed 9:1–9. https://doi.org/10.1002/anie.197000011

Schildknecht H, Weis KH (1962) Die Abwehrstoffe einiger Carabiden insbesondere von Abax ater. XII. Mitteilung über Insektenabwehrstoffe. Z Naturforsch B 17:439–447. https://doi.org/10.1515/znb-1962-0706

Schildknecht H, Holoubek K, Weis KH, Krämer H (1964) Defensive substances of the arthropods, their isolation and identification. Angew Chem Int Ed 3:73–82. https://doi.org/10.1002/anie.196400731

Schmidt JO, Dani FR, Jones GR, Morgan ED (2000) Chemistry, ontogeny, and role of pygidial gland secretions of the vinegaroon Mastigoproctus giganteus (Arachnida: Uropygi). J Insect Physiol 46:443–450. https://doi.org/10.1016/S0022-1910(99)00130-4

Schulz S, Boppre M, Vane-Wright RI (1993) Specific mixtures of secretions from male scent organs of African milkweed butterflies (Danainae). Philos Trans R Soc B 342:161–181. https://doi.org/10.1098/rstb.1993.0144

Sota T, Ishikawa R (2004) Phylogeny and life-history evolution in Carabus (subtribe Carabina: Coleoptera, Carabidae) based on sequences of two nuclear genes. Biol J Linn Soc 81:135–149. https://doi.org/10.1111/j.1095-8312.2004.00277.x

Turin H, Penev L, Casale A, Arndt E, Assmann T, Makarov K, Mossakowski D, Szél G, Weber F (2003) Chapter 5. Species accounts. In: Turin H, Penev L, Casale A (eds) The genus Carabus in Europe. A synthesis. Pensoft Publishers, Sofia-Moscow, pp 151–283

van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471. https://doi.org/10.1016/S0021-9673(01)80947-X

Vesović N (2019) Morphological study of the pygidial glands and analysis of the chemical composition of the secretions of selected ground beetle species (Insecta: Coleoptera: Carabidae). Doctoral dissertation, University of Belgrade - Faculty of Biology, Belgrade (in Serbian)

Vesović N, Vujisić L, Perić-Mataruga V, Krstić G, Nenadić M, Cvetković M, Ilijin L, Stanković J, Ćurčić S (2017) Chemical secretion and morpho-histology of the pygidial glands in two Palaearctic predatory ground beetle species: Carabus (Tomocarabus) convexus and C. (Procrustes) coriaceus (Coleoptera: Carabidae). J Nat Hist 51:545–560. https://doi.org/10.1080/00222933.2017.1293183

Wallace WE (2018) Retention indices. In: Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook. NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg. https://webbook.nist.gov. Accessed 12 Dec 2019

Whitman WD, Blum MS, Alsop DV (1990) Allomones: chemicals for defense. In: Evans DL, Schmidt OJ (eds) Insect defenses. Adaptive mechanisms and strategies of prey and predators. State University of New York, Albany, pp 289–351

Will KW, Attygalle AB, Herath K (2000) New defensive chemical data for ground beetles (Coleoptera: Carabidae): interpretations in a phylogenetic framework. Biol J Linn Soc 71:459–481. https://doi.org/10.1006/bijl.2000.0456

Wood DL (1982) The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu Rev Entomol 27:411–446. https://doi.org/10.1146/annurev.en.27.010182.002211

Xu S, Errabeli R, Will K, Arias E, Attygalle AB (2019) 3-Methyl-1-(methylthio)-2-butene: a component in the foul-smelling defensive secretion of two Ceroglossus species (Coleoptera: Carabidae). Chemoecology 29:171–178. https://doi.org/10.1007/s00049-019-00286-0