Putting on molecular weight: Enabling cryo-EM structure determination of sub-100-kDa proteins
Tài liệu tham khảo
Aissaoui, 2021, Modular imaging scaffold for single-particle electron microscopy, ACS Nano, 15, 4186, 10.1021/acsnano.0c05113
Baek, 2021, Accurate prediction of protein structures and interactions using a three-track neural network, Science, 373, 871, 10.1126/science.abj8754
Bloch, 2021, Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins, Proc. Natl. Acad. Sci. U. S. A, 118, 10.1073/pnas.2115435118
Brocchieri, 2005, Protein length in eukaryotic and prokaryotic proteomes, Nucleic Acids Res., 33, 3390, 10.1093/nar/gki615
Chen, 2022, 1
Chiu, 2021, Direct visualization of a 26 kDa protein by cryo-electron microscopy aided by a small scaffold protein, Biochemistry, 60, 1075, 10.1021/acs.biochem.0c00961
Coleman, 2020, Chemical and structural investigation of the paroxetine-human serotonin transporter complex, Elife, 9, 1, 10.7554/eLife.56427
Collu, 2021, 1
Coupland, 2021, Structure, mechanism, and inhibition of Hedgehog acyltransferase, Mol. Cell, 81, 5025, 10.1016/j.molcel.2021.11.018
Deng, 2021, Cryo-EM structure of a proton-activated chloride channel TMEM206, Sci. Adv., 7, 1, 10.1126/sciadv.abe5983
Duan, 2020, Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy, Nat. Commun., 11, 1, 10.1038/s41467-020-17933-8
García-Nafría, 2020, Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development, Annu. Rev. Pharmacol. Toxicol., 60, 51, 10.1146/annurev-pharmtox-010919-023545
Goddard, 2018, UCSF ChimeraX: meeting modern challenges in visualization and analysis, Protein Sci., 27, 14, 10.1002/pro.3235
Goutam, 2022, Structural basis of sodium-dependent bile salt uptake into the liver, Nature, 606, 1015, 10.1038/s41586-022-04723-z
Helma, 2015, Nanobodies and recombinant binders in cell biology, JCB (J. Cell Biol.), 209, 633, 10.1083/jcb.201409074
Himes, 2021, Cryo-TEM simulations of amorphous radiation-sensitive samples using multislice wave propagation, IUCrJ, 8, 943, 10.1107/S2052252521008538
Jumper, 2021, Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583, 10.1038/s41586-021-03819-2
Lander, 2021, Conquer by cryo-EM without physically dividing, Biochem. Soc. Trans., 49, 2287, 10.1042/BST20210360
Liu, 2018, Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system, Proc. Natl. Acad. Sci. U. S. A, 115, 3362, 10.1073/pnas.1718825115
Liu, 2019, A 3.8 Å resolution cryo-EM structure of a small protein bound to an imaging scaffold, Nat. Commun., 10, 1
McIlwain, 2021, N-Terminal transmembrane-helix epitope tag for X-ray crystallography and electron microscopy of small membrane proteins, J. Mol. Biol., 433, 10.1016/j.jmb.2021.166909
Mukherjee, 2020, Synthetic antibodies against BRIL as universal fiducial marks for single−particle cryoEM structure determination of membrane proteins, Nat. Commun., 11, 1
Niu, 2022, Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter, Nature, 601, 280, 10.1038/s41586-021-04212-9
Nygaard, 2020, Cryo-electron microscopy analysis of small membrane proteins, Curr. Opin. Struct. Biol., 64, 26, 10.1016/j.sbi.2020.05.009
Overington, 2006, How many drug targets are there?, Nat. Rev. Drug Discov., 5, 993, 10.1038/nrd2199
Renaud, 2018, Cryo-EM in drug discovery: achievements, limitations and prospects, Nat. Rev. Drug Discov., 17, 471, 10.1038/nrd.2018.77
Robertson, 2021, 1
Sun, 2020, A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor, Cell Res., 30, 1098, 10.1038/s41422-020-00442-0
Tamura-Sakaguchi, 2021, Moving toward generalizable NZ-1 labeling for 3D structure determination with optimized epitope-Tag insertion, Acta Crystallogr. D: Struct. Biol., 77, 645, 10.1107/S2059798321002527
Tsutsumi, 2020, Structure of human frizzled5 by fiducial-assisted cryo-em supports a heterodimeric mechanism of canonical wnt signaling, Elife, 9, 1, 10.7554/eLife.58464
Uchański, 2021, Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM, Nat. Methods, 18, 60, 10.1038/s41592-020-01001-6
Uchański, 2020, Nanobodies to study protein conformational states, Curr. Opin. Struct. Biol., 60, 117, 10.1016/j.sbi.2020.01.003
Vulovic, 2021, Generation of ordered protein assemblies using rigid three-body fusion, Proc. Natl. Acad. Sci. U. S. A, 118, 1, 10.1073/pnas.2015037118
Wigge, 2020, The rapidly evolving role of cryo-EM in drug design, Drug Discov. Today Technol., 38, 91, 10.1016/j.ddtec.2020.12.003
Wu, 2012, Fabs enable single particle cryoEM studies of small proteins, Structure, 20, 582, 10.1016/j.str.2012.02.017
Wu, 2021, Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies), Proc. Natl. Acad. Sci. U. S. A, 118, 1, 10.1073/pnas.2115001118
Xia, 2021, Cryo-EM structure of the human histamine H1 receptor/Gq complex, Nat. Commun., 12, 1
Xu, 2022, 1
Yao, 2019, Fusion of DARPin to aldolase enables visualization of small protein by cryo-EM, Structure, 27, 1148, 10.1016/j.str.2019.04.003
Yeates, 2020, Development of imaging scaffolds for cryo-electron microscopy, Curr. Opin. Struct. Biol., 60, 142, 10.1016/j.sbi.2020.01.012
Yonekura, 2006, Electron energy filtering significantly improves amplitude contrast of frozen-hydrated protein at 300 kV, J. Struct. Biol., 156, 524, 10.1016/j.jsb.2006.07.016
Zhang, 2022, Cryo-EM, protein engineering, and simulation enable the development of peptide therapeutics against acute myeloid leukemia, ACS Cent. Sci., 8, 214, 10.1021/acscentsci.1c01090
Zhang, 2022, Fusion protein strategies for cryo-EM study of G protein-coupled receptors, Nat. Commun., 13, 1
Zimmermann, 2018, Synthetic single domain antibodies for the conformational trapping of membrane proteins, Elife, 7, 1, 10.7554/eLife.34317
