Purpald containing poly(2,5-dithienylpyrrole)-based multifunctional conducting polymer: synthesis, characterization, and electrochromic properties

Ionics - Tập 26 - Trang 3501-3511 - 2020
Ogun Gumusay1, Tugba Soganci1, Simge Durur1, Hakan Can Soyleyici2, Halil Cetisli1, Metin Ak1
1Faculty of Art and Science, Chemistry Department, Pamukkale University, Denizli, Turkey
2Department of Electricity and Energy, Adnan Menderes University Buharkent Vocational School, Aydın, Turkey

Tóm tắt

Synthesis of novel purpald (4-amino-5-hydrazino-1,2,4-triazole-3-thiol) containing 2,5-di(2-thienyl)pyrrole (TPTP) derivative monomer has been successfully achieved. Its functional conductive polymer (pTPTP) obtained electrochemically has been characterized and electrooptical properties have been investigated. In this way, multifunctional conductive polymer film has been formed by means of advanced functionalization of thiol and amine group on the polymeric backbone that can be applied in many fields such as metal sensor, biosensor sensor, and biochemical imaging. The potential usage of this multifunctional conductive polymer film in smart windows application has been investigated and the optical contrast value which is the most important parameter of this technology has been measured as 75%.

Tài liệu tham khảo

Liang C, Wang H (2017) Indacenodithiophene-based D-A conjugated polymers for application in polymer solar cells. Org Electron Phys, Mater Appl 50:443–457. https://doi.org/10.1016/j.orgel.2017.06.059 Kim NK, Shin ES, Noh YY, Kim DY (2018) A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors. Org Electron Phys, Mater Appl 55:6–14. https://doi.org/10.1016/j.orgel.2018.01.006 Han R, Lu S, Wang Y et al (2015) Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells. Electrochim Acta 173:796–803. https://doi.org/10.1016/j.electacta.2015.05.130 Qin L, Zhen S, Xu J et al (2014) Poly(thieno[3,4- b ]-1,4-oxathiane): medium effect on electropolymerization and electrochromic performance. Langmuir 30:15581–15589. https://doi.org/10.1021/la503948f Zhang Z, Zheng W, Cheng H et al (2013) Tricolor electrochromism of copolymer based on selenophene and 3,4-ethylenedioxythiophene. Synth Met 162:2428–2432. https://doi.org/10.1016/j.synthmet.2012.11.026 Gicevicius M, Bagdziunas G, Abduloglu Y, Ramanaviciene A, Gumusay O, Ak M, Soganci T, Ramanavicius A (2018) Experimental and theoretical investigations of an electrochromic azobenzene and 3,4-ethylenedioxythiophene-based electrochemically formed polymeric semiconductor. ChemPhysChem 19:2735–2740. https://doi.org/10.1002/cphc.201800478 Ak M, Camurlu P, Yılmaz F et al (2006) Electrochromic properties and electrochromic device application of copolymer ofN-(4-(3-thienyl methylene)-oxycarbonylphenyl)maleimide with thiophene. J Appl Polym Sci 102:4500–4505. https://doi.org/10.1002/app.24834 Guzel M, Ak M (2019) A solution-processable electrochromic polymer designed with Reactive Yellow 160 and 2-hydroxy carbazole. Org Electron 75:105436. https://doi.org/10.1016/j.orgel.2019.105436 Abashev GG, Bushueva AY, Shklyaeva EV (2011) N-substituted 2,5-di(2-thienyl)pyrroles: application, production, properties, and electrochemical polymerization (review). Chem Heterocycl Compd 47:130–154 Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320. https://doi.org/10.1021/cr900129a Gumusay O, Soganci T, Soyleyici HC et al (2017) Electrochemistry of secondary amine substituted 2,5-di(2-thienyl)pyrrole derivative and its copolymer. J Electrochem Soc 164:421–429. https://doi.org/10.1149/2.0291707jes Guzel M, Soganci T, Karatas E, Ak M (2018) Donor-acceptor type super-structural triazine cored conducting polymer containing carbazole and quinoline for high-contrast electrochromic device. J Electrochem Soc 165:316–323. https://doi.org/10.1149/2.1201805jes Karatas E, Guzel M, Ak M (2017) Asymmetric star-shaped functionalized triazine architecture and its electrochromic device application. J Electrochem Soc 164:H463–H469. https://doi.org/10.1149/2.0731707jes Kurtay G, Soganci T, Ak M, Gullu M (2016) Synthesis and computational bandgap engineering of new 3,4-Alkylenedioxypyrrole (ADOP) derivatives and investigation of their electrochromic properties. J Electrochem Soc 163:H896–H905. https://doi.org/10.1149/2.0131610jes Lee SH, Cho W, Hwang DK et al (2017) Synthesis of poly(3,4-ethylene dioxythiophene)/ammonium vanadate nanofiber composites for counter electrode of dye-sensitized solar cells. Electrochim Acta 245:607–614. https://doi.org/10.1016/j.electacta.2017.05.194 Thomas JP, Rahman MA, Srivastava S, Kang JS, McGillivray D, Abd-Ellah M, Heinig NF, Leung KT (2018) Highly conducting hybrid silver-nanowire-embedded poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) for high-efficiency planar silicon/organic heterojunction solar cells. ACS Nano 12:9495–9503. https://doi.org/10.1021/acsnano.8b04848 Han Y, Dai L (2019) Conducting polymers for flexible supercapacitors. Macromol Chem Phys 220:1800355. https://doi.org/10.1002/macp.201800355 Ghorbani Zamani F, Moulahoum H, Ak M et al (2019) Current trends in the development of conducting polymers-based biosensors. TrAC Trends Anal Chem 118:264–276. https://doi.org/10.1016/j.trac.2019.05.031 Unlu CG, Acet M, Ocakoglu K et al (2018) An effective non-enzymatic biosensor platform based on copper nanoparticles decorated by sputtering on CVD graphene. Sensors Actuators B Chem 273:1501–1507. https://doi.org/10.1016/j.snb.2018.07.064 Olgac R, Soganci T, Baygu Y et al (2017) Zinc(II) phthalocyanine fused in peripheral positions octa-substituted with alkyl linked carbazole: synthesis, electropolymerization and its electro-optic and biosensor applications. Biosens Bioelectron 98:202–209. https://doi.org/10.1016/j.bios.2017.06.028 Tekbaşoğlu TY, Soganci T, Ak M et al (2017) Enhancing biosensor properties of conducting polymers via copolymerization: synthesis of EDOT-substituted bis(2-pyridylimino)isoindolato-palladium complex and electrochemical sensing of glucose by its copolymerized film. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2016.08.020 Ayranci R, Torlak Y, Soganci T, Ak M (2018) Trilacunary Keggin type polyoxometalate-conducting polymer composites for amperometric glucose detection. J Electrochem Soc 165:B638–B643. https://doi.org/10.1149/2.1061813jes Makelane HR, John SV, Waryo TT et al (2016) AC voltammetric transductions and sensor application of a novel dendritic poly(propylene thiophenoimine)-co-poly(3-hexylthiophene) star co-polymer. Sensors Actuators B Chem 227:320–327. https://doi.org/10.1016/j.snb.2015.12.020 Soganci T, Baygu Y, Kabay N, Gök Y, Ak M (2018) Comparative investigation of peripheral and nonperipheral zinc phthalocyanine-based polycarbazoles in terms of optical, electrical, and sensing properties. ACS Appl Mater Interfaces 10:21654–21665. https://doi.org/10.1021/acsami.8b06206 Göktuğ Ö, Soganci T, Ak M, Şener MK (2017) Efficient synthesis of EDOT modified ABBB-type unsymmetrical zinc phthalocyanine: optoelectrochromic and glucose sensing properties of its copolymerized film. New J Chem 41:14080–14087. https://doi.org/10.1039/C7NJ03250A Xu D, Wang H, Li F et al (2019) Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces 6:1801506. https://doi.org/10.1002/admi.201801506 Anilkumar KM, Jinisha B, Manoj M et al (2018) Layered sulfur/PEDOT:PSS nano composite electrodes for lithium sulfur cell applications. Appl Surf Sci 442:556–564. https://doi.org/10.1016/j.apsusc.2018.02.178 Kim J, Chae S, Yi A et al Syntheses and optical, electrochemical, and photovoltaic properties of polymers with 6-(2-thienyl)-4H-thieno[2,3-b]indole with a variety of electron-deficient units. J Appl Polym Sci:47624. https://doi.org/10.1002/app.47624 Ayranci R, Demirkol D, Ak M, Timur S (2015) Ferrocene-functionalized 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: a novel design in conducting polymer-based electrochemical biosensors. Sensors 15:1389–1403. https://doi.org/10.3390/s150101389 Koyuncu S, Zafer C, Sefer E et al (2009) A new conducting polymer of 2,5-bis(2-thienyl)-1H-(pyrrole) (SNS) containing carbazole subunit: electrochemical, optical and electrochromic properties. Synth Met 159:2013–2021. https://doi.org/10.1016/j.synthmet.2009.07.027 Yavuz A, Bezgin B, Aras L, Önal AM (2010) Synthesis and electropolymerization of the phthaocyanines with 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl) substituents. J Electroanal Chem 639:116–122. https://doi.org/10.1016/j.jelechem.2009.11.033 Tuncagil S, Ozdemir C, Demirkol DO, Timur S, Toppare L (2011) Gold nanoparticle modified conducting polymer of 4-(2,5-di(thiophen-2-yl)- 1H-pyrrole-1-l) benzenamine for potential use as a biosensing material. Food Chem 127:1317–1322. https://doi.org/10.1016/j.foodchem.2011.01.089 Söyleyici HC, Ak M, Şahin Y et al (2013) New class of 2,5-di(2-thienyl)pyrrole compounds and novel optical properties of its conducting polymer. Mater Chem Phys 142:303–310. https://doi.org/10.1016/j.matchemphys.2013.07.019 Galindo MA, Hannant J, Harrington RW, Clegg W, Horrocks BR, Pike AR, Houlton A (2011) Pyrrolyl-, 2-(2-thienyl)pyrrolyl- and 2,5-bis(2-thienyl)pyrrolyl-nucleosides: synthesis, molecular and electronic structure, and redox behaviour of C5-thymidine derivatives. Org Biomol Chem 9:1555–1564. https://doi.org/10.1039/c0ob00466a Just PE, Chane-Ching KI, Lacaze PC (2002) Synthesis of 2,5-di(2-thienyl)-1H-pyrrole N-linked with conjugated bridges. Tetrahedron 58:3467–3472. https://doi.org/10.1016/S0040-4020(02)00328-9 Yildiz E, Camurlu P, Tanyeli C et al (2008) A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT. J Electroanal Chem 612:247–256. https://doi.org/10.1016/j.jelechem.2007.10.004 El’shina TS, Sosnin EA, Shklyaeva EV, Abashev GG (2013) N-substituted 2,5-Di(2-thienyl)pyrroles. Synthesis and electrochemical properties. Russ J Gen Chem 83:726–730. https://doi.org/10.1134/S1070363213040208 Soganci T (2019) Effects of N-substitution group on electrochemical, electrochromic and optical properties of dithienyl derivative. J Electrochem Soc 166:1112–1118. https://doi.org/10.1149/2.0341902jes Yiğit D, Hacioglu SO, Güllü M, Toppare L (2016) Synthesis and spectroelectrochemical characterization of multi-colored novel poly(3,6-dithienylcarbazole) derivatives containing azobenzene and coumarin chromophore units. Electrochim Acta 196:140–152. https://doi.org/10.1016/j.electacta.2016.02.168 Yiğit D, Udum YA, Güllü M, Toppare L (2014) Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: multicolored electrochromic polymers. J Electroanal Chem 712:215–222. https://doi.org/10.1016/j.jelechem.2013.11.028 Zhou W, Xu J, Du Y, Yang P (2010) Electrochemical polymerization of p-terphenyl in mixed electrolyte of boron trifluoride diethyl etherate and CH2Cl2. J Appl Polym Sci 117:2688–2694. https://doi.org/10.1002/app.30927 Xu Z, Du H, Yin M et al (2018) Benzothiadiazole, hexylthiophen and alkoxy benzene based solution processable copolymer: effect of the electron withdrawing substituents (fluorine atoms) on electrochemical, optical and electrochromic properties. Org Electron 61:1–9. https://doi.org/10.1016/j.orgel.2018.06.048 Reeves BD, Grenier CRG, Argun AA et al (2004) Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules 37:7559–7569. https://doi.org/10.1021/ma049222y Soganci T, Kurtay G, Ak M, Güllü M (2014) Preparation of an EDOT-based polymer: optoelectronic properties and electrochromic device application. RSC Adv 5:2630–2639. https://doi.org/10.1039/C4RA13060J Ak M, Gancheva V, Terlemezyan L, Tanyeli C, Toppare L (2008) Synthesis of a dipyrromethane functionalized monomer and optoelectrochromic properties of its polymer. Eur Polym J 44(8):2567–2573 Soganci T, Ak M, Giziroglu E, Soyleyici HC (2016) Smart window application of a new hydrazide type SNS derivative. RSC Adv 6:1744–1749. https://doi.org/10.1039/c5ra24759d Wang G, Fu X, Huang J et al (2010) Synthesis and spectroelectrochemical properties of two new dithienylpyrroles bearing anthraquinone units and their polymer films. Electrochim Acta 55:6933–6940. https://doi.org/10.1016/j.electacta.2010.07.012 Ak M, Soğancı T, Gümüşay O, Çukurluoğlu S (2017) Synthesis of conducting polymer with green chemistry and its electrochromic properties. Pamukkale Univ J Eng Sci 23:753–758. https://doi.org/10.5505/pajes.2016.66674