Purification, crystallization and preliminary crystallographic analysis of peroxidase from the palm tree Chamaerops excelsa

International Union of Crystallography (IUCr) - Tập 67 Số 12 - Trang 1641-1644 - 2011
Larissa C. Textor1, Jademilson C. Santos2, Nazaret Hidalgo Cuadrado3, Manuel G. Roig3, Galina G. Zhadan4, Valery L. Shnyrov4, Igor Polikarpov5
1[Instituto de Física de São Carlos, Universidade de Sáo Paulo, Sao Carlos, SP, Brazil]
2Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13560-970 São Carlos-SP, Brazil
3Departamento de Quı́mica Fı́sica, Facultad de Quı́mica, Universidad de Salamanca, 37008 Salamanca, Spain
4Departamento de Bioquímica y Biología Molecular Facultad de Biologia Universidad de Salamanca 37007 Salamanca, Spain
5University of São Paulo

Tóm tắt

Plant peroxidases are presently used extensively in a wide range of biotechnological applications owing to their high environmental and thermal stability. As part of efforts towards the discovery of appealing new biotechnological enzymes, the peroxidase from leaves of the palm tree Chamaerops excelsa (CEP) was extracted, purified and crystallized in its native form. An X-ray diffraction data set was collected at a synchrotron source and data analysis showed that the CEP crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 70.2, b = 100.7, c = 132.3 Å.

Từ khóa


Tài liệu tham khảo

Apitz, 2001, Arch. Microbiol., 175, 405, 10.1007/s002030100279

Avsian-Kretchmer, 2004, Plant Physiol., 135, 1685, 10.1104/pp.104.041921

Azevedo, 2003, Biotechnol. Annu. Rev., 9, 199, 10.1016/S1387-2656(03)09003-3

Bolwell, 2002, J. Exp. Bot., 53, 1367, 10.1093/jexbot/53.372.1367

Campa, A. (1991). Peroxidases in Chemistry and Biology, Vol. II, edited by J. Everse, K. E. Everse & M. B. Grisham, pp. 25-50. Boca Raton: CRC Press.

Dawson, 1988, Science, 240, 433, 10.1126/science.3358128

Dubey, 2007, Prep. Biochem. Biotechnol., 37, 47, 10.1080/10826060601040871

Emsley, 2010, Acta Cryst. D, 66, 486, 10.1107/S0907444910007493

Gajhede, 1997, Nature Struct. Biol., 4, 1032, 10.1038/nsb1297-1032

Gudelj, 2001, Extremophiles, 5, 423, 10.1007/s007920100218

Guimarães, 2009, J. Synchrotron Rad., 16, 69, 10.1107/S0909049508034870

Henriksen, 2001, Protein Sci., 10, 108, 10.1110/ps.37301

Henriksen, 1998, J. Biol. Chem., 273, 2241, 10.1074/jbc.273.4.2241

Kabsch, 2010, Acta Cryst. D, 66, 125, 10.1107/S0907444909047337

Kengen, 2001, Extremophiles, 5, 323, 10.1007/s007920100208

Kumar, 2008, Int. J. Biotechnol. Biochem., 4, 283

Kvaratskhelia, 1997, Plant Physiol., 114, 1237, 10.1104/pp.114.4.1237

Loprasert, 1988, J. Gen. Microbiol., 134, 1971

Matthews, 1968, J. Mol. Biol., 33, 491, 10.1016/0022-2836(68)90205-2

McCoy, 2007, J. Appl. Cryst., 40, 658, 10.1107/S0021889807021206

McEldoon, 1996, Biotechnol. Prog., 12, 555, 10.1021/bp960010x

Mchedlishvili, 2005, Prikl. Biokhim. Mikrobiol., 41, 165

McLusky, 1999, Plant J., 17, 523, 10.1046/j.1365-313X.1999.00403.x

Murshudov, 2011, Acta Cryst. D, 67, 355, 10.1107/S0907444911001314

Rabe, 2008, Chembiochem, 9, 420, 10.1002/cbic.200700450

Rani, 2006, Appl. Biochem. Biotechnol., 128, 215, 10.1385/ABAB:128:3:215

Rodríguez, 2002, Eur. J. Biochem., 269, 2584, 10.1046/j.1432-1033.2002.02930.x

Ryan, 2006, Trends Biotechnol., 24, 355, 10.1016/j.tibtech.2006.06.007

Schuller, 1996, Structure, 4, 311, 10.1016/S0969-2126(96)00035-4

Wallace, 1999, Phytochemistry, 52, 769, 10.1016/S0031-9422(99)00342-8

Wang, 1996, Biochemistry, 35, 7299, 10.1021/bi9517704

Watanabe, 2010, J. Struct. Biol., 169, 226, 10.1016/j.jsb.2009.10.009

Watanabe, 2007, Acta Cryst. F, 63, 780, 10.1107/S174430910703984X

Welinder, 1992, Biochem. Soc. Trans., 20, 337, 10.1042/bst0200337

Winn, 2011, Acta Cryst. D, 67, 235, 10.1107/S0907444910045749

Zamorano, 2008, Biochimie, 90, 1737, 10.1016/j.biochi.2008.07.010

Zamorano, 2009, Int. J. Biol. Macromol., 44, 326, 10.1016/j.ijbiomac.2009.01.004