Purification and characterization of an oxygen-evolving photosystem II from Leptolyngbya sp. strain O-77

Journal of Bioscience and Bioengineering - Tập 118 - Trang 119-124 - 2014
Harutaka Nakamori1, Takeshi Yatabe1,2, Ki-Seok Yoon2, Seiji Ogo1,2,3
1Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
2Catalytic Materials Transformations Research Division, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
3Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan

Tài liệu tham khảo

Zouni, 2001, Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution, Nature, 409, 739, 10.1038/35055589 Umena, 2011, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, 473, 55, 10.1038/nature09913 Reece, 2011, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts, Science, 334, 645, 10.1126/science.1209816 Young, 2012, Light-driven water oxidation for solar fuels, Coord. Chem. Rev., 256, 2503, 10.1016/j.ccr.2012.03.031 Saito, 2013, Mechanism of proton-coupled quinone reduction in photosystem II, Proc. Natl. Acad. Sci. USA, 15, 1 Yamanaka, 2011, Possible mechanisms for the O–O bond formation in oxygen evolution reaction at the CaMn4O5(H2O)4 cluster of PSII refined to 1.9 Å X-ray resolution, Chem. Phys. Lett., 511, 138, 10.1016/j.cplett.2011.06.021 Kashino, 2002, Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides, Biochemistry, 41, 8004, 10.1021/bi026012+ Kern, 2005, Purification, characterization and crystallization of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor, Biochim. Biophys. Acta, 1706, 147, 10.1016/j.bbabio.2004.10.007 Smith, 2002, Magneto-optical measurements of the pigments in fully active photosystem II core complexes from plants, Biochemistry, 41, 1981, 10.1021/bi0111202 Suzuki, 2003, Binding and functional properties of the extrinsic proteins in oxygen-evolving photosystem II particle from a green alga, Chlamydomonas reinhardtii having His-tagged CP47, Plant Cell Physiol., 44, 76, 10.1093/pcp/pcg010 Bowes, 1983, Purification of photosystem II particles from Phormidium laminosum using the detergent dodecyl-β-d-maltoside, Biochim. Biophys. Acta, 725, 210, 10.1016/0005-2728(83)90241-4 Stewart, 1979, Preparation of an active, oxygen-evolving photosystem 2 particle from a blue-green alga, FEBS Lett., 107, 308, 10.1016/0014-5793(79)80396-8 Nübel, 1997, PCR primers to amplify 16S rRNA genes from cyanobacteria, Appl. Environ. Microbiol., 63, 3327, 10.1128/aem.63.8.3327-3332.1997 Thompson, 1997, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 25, 4876, 10.1093/nar/25.24.4876 Saitou, 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4, 406 Felsenstein, 1981, Evolutionary trees from DNA sequences: a maximum likelihood approach, J. Mol. Evol., 17, 368, 10.1007/BF01734359 Kumar, 2004, MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinform., 5, 150, 10.1093/bib/5.2.150 Felsenstein, 1985, Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 39, 783, 10.1111/j.1558-5646.1985.tb00420.x Kashino, 2001, An improved sodium dodecyl sulfate-polyacrylamide gel electrophoresis system for the analysis of membrane protein complexes, Electrophoresis, 22, 1004, 10.1002/1522-2683()22:6<1004::AID-ELPS1004>3.0.CO;2-Y Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0 Porra, 1989, Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Biochim. Biophys. Acta, 975, 384, 10.1016/S0005-2728(89)80347-0 Lürling, 2013, Comparison of cyanobacterial and green algal growth rates at different temperatures, Freshw. Biol., 58, 552, 10.1111/j.1365-2427.2012.02866.x Brown, 2010, Polyphasic characterization of a thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits, Appl. Environ. Microbiol., 76, 6664, 10.1128/AEM.00662-10 Bruno, 2009, Cytomorphological and genetic characterization of troglobitic Leptolyngbya strains isolated from Roman Hypogea, Appl. Environ. Microbiol., 75, 608, 10.1128/AEM.01183-08 Schirrmeister, 2013, Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event, Proc. Natl. Acad. Sci. USA, 110, 1791, 10.1073/pnas.1209927110 Gounaris, 1989, Isolation and characterization of D1/D2/cytochrome b-559 complex from Synechocystis 6803, Biochim. Biophys. Acta, 973, 296, 10.1016/S0005-2728(89)80435-9 Metz, 1986, Evidence for a dual function of the herbicide-binding D1 protein in photosystem II, FEBS Lett., 205, 269, 10.1016/0014-5793(86)80911-5 Aminaka, 2006, Acclimation to the growth temperature and thermosensitivity of photosystem II in a mesophilic cyanobacterium, Synechocystis sp. PCC 6803, Plant Cell Physiol., 47, 1612, 10.1093/pcp/pcl024 Yamane, 1998, Effects of high temperatures on the photosynthetic system in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process, Photosynth. Res., 57, 51, 10.1023/A:1006019102619 Bailey, 2008, Photoprotection in cyanobacteria: regulation of light harvesting, Photochem. Photobiol., 84, 1410, 10.1111/j.1751-1097.2008.00453.x Pakrasi, 1984, A highly active oxygen-evolving photosystem II preparation from the cyanobacterium Anacystis nidulans, Plant Physiol., 74, 742, 10.1104/pp.74.3.742 Shibata, 2013, Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy Meets Theory, J. Am. Chem. Soc., 135, 6903, 10.1021/ja312586p Strasser, 1977, Fluorescence emission spectra of photosystem I, photosystem II and the light-harvesting chlorophyll a/b complex of higher plants, Biochim. Biophys. Acta, 462, 307, 10.1016/0005-2728(77)90129-3 Nowaczyk, 2012, Deletion of psbJ leads to accumulation of Psb27-Psb28 photosystem II complexes in Thermosynechococcus elongatus, Biochim. Biophys. Acta, 1817, 1339, 10.1016/j.bbabio.2012.02.017 Pagliano, 2011, One-step isolation and biochemical characterization of a highly active plant PSII monomeric core, Photosynth. Res., 108, 33, 10.1007/s11120-011-9650-4 Sugiura, 2010, Psb30 contributes to structurally stabilise the photosystem II complex in the thermophilic cyanobacterium Thermosynechococcus elongatus, Biochim. Biophys. Acta, 1797, 1546, 10.1016/j.bbabio.2010.03.020 Svebsson, 2002, Small-angle X-ray scattering studies of the manganese stabilizing subunit in photosystem II, J. Phys. Chem. B, 106, 8485, 10.1021/jp0258199