Purification and Characterization of (2R,3R)-2,3-Butanediol Dehydrogenase of the Human Pathogen Neisseria gonorrhoeae FA1090 Produced in Escherichia coli
Tóm tắt
2,3-Butanediol dehydrogenase (BDH), also known as acetoin/diacetyl reductase, is a pivotal enzyme for the formation of 2,3-butanediol (2,3-BD), a chiral compound with potential roles in the virulence of certain pathogens. Here, a NAD(H)-dependent (2R,3R)-BDH from Neisseria gonorrhoeae FA1090 (NgBDH), the causative agent of gonorrhoea, was functionally characterized. Sequence analysis indicated that it belongs to zinc-containing medium-chain dehydrogenase/reductase family. The recombinant NgBDH migrated as a single band with a size of around 45 kDa on SDS-PAGE and could be confirmed by Western blotting and mass spectrometry. For the oxidation of either (2R,3R)-2,3-BD or meso-2,3-BD, the enzyme exhibited a broad pH optimum between pH 9.5 to 11.5. For the reduction of (3R/3S)-acetoin, the pH optimum was around 6.5. The enzyme could catalyze the stereospecific oxidation of (2R,3R)-2,3-BD (Km = 0.16 mM, kcat/Km = 673 s−1 · mM−1) and meso-BD (Km = 0.72 mM, kcat/Km = 165 s−1 · mM−1). Moreover, it could also reduce (3R/3S)-acetoin with a Km of 0.14 mM and a kcat/Km of 885 s−1 · mM−1. The results presented here contribute to understand the 2,3-BD metabolism in N. gonorrhoeae and pave the way for studying the influence of 2,3-BD metabolism on the virulence of this pathogen in the future.
Tài liệu tham khảo
Wang, Z., Song, Q., Yu, M., Wang, Y., Xiong, B., Zhang, Y., Zheng, J., & Ying, X. (2014). Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Applied Microbiology and Biotechnology, 98, 641–650.
Raedts, J., Siemerink, M. A., Levisson, M., van der Oost, J., & Kengen, S. W. (2014). Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052. Applied and Environmental Microbiology, 80, 2011–2020.
Wang, Y., Li, L., Ma, C., Gao, C., Tao, F., & Xu, P. (2013). Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Scientific Report, 3, 2643.
Ji, X. J., Huang, H., & Ouyang, P. K. (2011). Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnology Advances, 29, 351–364.
Zhang, L., Xu, Q., Zhan, S., Li, Y., Lin, H., Sun, S., Sha, L., Hu, K., Guan, X., & Shen, Y. (2014). A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Applied Microbiology and Biotechnology, 98, 1175–1184.
Pu, Z., Ji, F., Wang, J., Zhang, Y., Sun, W., & Bao, Y. (2017). Rational design of Meso-2,3-butanediol dehydrogenase by molecular dynamics simulation and experimental evaluations. FEBS Letters, 591, 3402–3413.
Yu, B., Sun, J., Bommareddy, R. R., Song, L., & Zeng, A.-P. (2011). Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Applied and Environmental Microbiology, 77, 4230–4233.
Gonzalez, E., Fernandez, M. R., Larroy, C., Sola, L., Pericas, M. A., Pares, X., & Biosca, J. A. (2000). Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. Journal of Biological Chemistry, 275, 35876–35885.
Persson, B., Hedlund, J., & Jornvall, H. (2008). Medium- and short-chain dehydrogenase/reductase gene and protein families : the MDR superfamily. Cellular and Molecular Life Sciences, 65, 3879–3894.
JöRnvall, H., Persson, B., Krook, M., Atrian, S., Gonzàlez-Duarte, R., Jeffery, J., & Ghosh, D. (1995). Short-chain dehydrogenases/reductases (SDR). Biochemistry, 34, 6003–6013.
Geckil, H., Barak, Z., Chipman, D. M., Erenler, S. O., Webster, D. A., & Stark, B. C. (2004). Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess and Biosystems Engineering, 26, 325–330.
Effantin, G., Rivasseau, C., Gromova, M., Bligny, R., & Hugouvieux-Cotte-Pattat, N. (2011). Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Molecular Microbiology, 82, 988–997.
Xiao, Z., & Xu, P. (2007). Acetoin metabolism in bacteria. Critical Reviews in Microbiology, 33, 127–140.
Yoon, S. S., & Mekalanos, J. J. (2006). 2,3-butanediol synthesis and the emergence of the Vibrio cholerae El Tor biotype. Infection and Immunity, 74, 6547–6556.
D’Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., & Turlings, T. C. J. (2014). Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell and Environment, 37, 813–826.
Marquez-Villavicencio Mdel, P., Weber, B., Witherell, R. A., Willis, D. K., & Charkowski, A. O. (2011). The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS ONE, 6, e22974.
Venkataraman, A., Rosenbaum, M. A., Werner, J. J., Winans, S. C., & Angenent, L. T. (2014). Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa. ISME Journal, 8, 1210–1220.
Feinbaum, R. L., Urbach, J. M., Liberati, N. T., Djonovic, S., Adonizio, A., Carvunis, A. R., & Ausubel, F. M. (2012). Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathogens, 8, e1002813.
Liu, Q., Liu, Y., Kang, Z., Xiao, D., Gao, C., Xu, P., & Ma, C. (2018). 2,3-Butanediol catabolism in Pseudomonas aeruginosa PAO1. Environmental Microbiology, 20, 3927–3940.
Quillin, S. J., & Seifert, H. S. (2018). Neisseria gonorrhoeae host adaptation and pathogenesis. Nature Reviews Microbiology, 16, 226–240.
Newman, L., Rowley, J., Vander Hoorn, S., Wijesooriya, N. S., Unemo, M., Low, N., Stevens, G., Gottlieb, S., Kiarie, J., & Temmerman, M. (2015). Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE, 10, e0143304.
Magnus, U., & Shafer, W. M. (2014). Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clinical Microbiology Reviews, 27, 587–613.
Stefanelli, P., Carannante, A., Bonanno, C. L., Cusini, M., Ghisetti, V., Mencacci, A., Barbui, A. M., Prignano, G., Vocale, C., & Vacca, P. (2018). Molecular characterization of penicillinase-producing Neisseria gonorrhoeae isolated in two time periods, 2003–2004 and 2014–2015, in Italy. Microbial Drug Resistance, 24, 621–626.
Unemo, M. (2015). Current and future antimicrobial treatment of gonorrhoea - the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infectious Diseases, 15, 364.
Lewis, D. A. (2015). Will targeting oropharyngeal gonorrhoea delay the further emergence of drug-resistant Neisseria gonorrhoeae strains? Sexually Transmitted Infections, 91, 234–237.
Katz, A. R. (2018). Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017. Emerging Infectious Diseases, 24, 608.
Hebeler, B. H., & Morse, S. A. (1976). Physiology and metabolism of pathogenic neisseria: tricarboxylic acid cycle activity in Neisseria gonorrhoeae. Journal of Bacteriology, 128, 192–201.
Nóbrega, C. S., Raposo, M., Van Driessche, G., Devreese, B., & Pauleta, S. R. (2017). Biochemical characterization of the bacterial peroxidase from the human pathogen Neisseria gonorrhoeae. Journal of Inorganic Biochemistry, 171, 108–119.
Atack, J. M., Ibranovic, I., Ong, C. L., Djoko, K. Y., Chen, N. H., Vanden Hoven, R., Jennings, M. P., Edwards, J. L., & McEwan, A. G. (2014). A role for lactate dehydrogenases in the survival of Neisseria gonorrhoeae in human polymorphonuclear leukocytes and cervical epithelial cells. Journal of Infectious Diseases, 210, 1311–1318.
Barrett, K. F., Dranow, D. M., Phan, I. Q., Michaels, S. A., Shaheen, S., Navaluna, E. D., Craig, J. K., Tillery, L. M., Choi, R., Edwards, T. E., Conrady, D. G., Abendroth, J., Horanyi, P. S., Lorimer, D. D., Van Voorhis, W. C., Zhang, Z., Barrett, L. K., Subramanian, S., Staker, B., … Ojo, K. K. (2020). Structures of glyceraldehyde 3-phosphate dehydrogenase in Neisseria gonorrhoeae and Chlamydia trachomatis. Protein Science, 29, 768–778.
Brooks, J. B., Kellogg, D. S., Jr., Choudhary, G., Alley, C. C., & Liddle, J. A. (1978). Identification of some basic extractable compounds produced by Neisseria gonorrhoeae and Neisseria meningitidis in a defined medium. Journal of Clinical Microbiology, 7, 415–418.
Morse, C. D., Brooks, J. B., & Kellogg, D. S., Jr. (1977). Identification of Neisseria by electron capture gas-liquid chromatography of metabolites in a chemically defined growth medium. Journal of Clinical Microbiology, 6, 474–481.
Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205–217.
Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic acids research, 42, W320-324.
Zdobnov, E. M., & Apweiler, R. (2001). InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17, 847–848.
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.
Mbeunkui, F., Fodstad, O., & Pannell, L. K. (2006). Secretory protein enrichment and analysis: an optimized approach applied on cancer cell lines using 2D LC-MS/MS. Journal of Proteome Research, 5, 899–906.
Takeda, M., Muranushi, T., Inagaki, S., Nakao, T., Motomatsu, S., Suzuki, I., & Koizumi, J.-I. (2014). Identification and characterization of a Mycobacterial (2R,3R)-2,3-butanediol dehydrogenase. Bioscience, Biotechnology, and Biochemistry, 75, 2384–2389.
Yu, M., Huang, M., Song, Q., Shao, J., & Ying, X. (2015). Characterization of a (2R,3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010. Molecules, 20, 7156–7173.
Mancinelli, M., Arfè, A., Martucci, A., Pasti, L., Chenet, T., Sarti, E., Vergine, G., & Belviso, C. (2020). Evaluation for the removal efficiency of VOCs and heavy metals by zeolites-based materials in the wastewater: a case study in the Tito Scalo industrial area. Processes, 8, 1519.
Gao, J., Yang, H. H., Feng, X. H., Li, S., & Xu, H. (2013). A 2,3-butanediol dehydrogenase from Paenibacillus polymyxa ZJ-9 for mainly producing R, R-2,3-butanediol: purification, characterization and cloning. Journal of Basic Microbiology, 53, 733–741.
Tang, W.-G., Song, P., Cao, Z.-Y., Wang, P., & Zhu, G.-P. (2015). A unique homodimeric NAD+-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus tauri. The FASEB Journal, 29, 2462–2472.
Baker, P. J., Britton, K. L., Rice, D. W., Rob, A., & Stillman, T. J. (1992). Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity. Journal of Molecular Biology, 228, 662–671.
Johansen, L., Bryn, K., & Stormer, F. C. (1975). Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. Journal of Bacteriology, 123, 1124–1130.
Moons, P., Van Houdt, R., Vivijs, B., Michiels, C. W., & Aertsen, A. (2011). Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Applied and Environmental Microbiology, 77, 3422–3427.
Stevens, J. S., & Criss, A. K. (2018). Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: neutrophilic host response, sustained infection, and clinical sequelae. Current Opinion in Hematology, 25, 13–21.
O’Hanlon, D. E., Moench, T. R., & Cone, R. A. (2013). Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE, 8, e80074.