Pure Bargaining Problems with a Coalition Structure

Homo Oeconomicus - Tập 33 Số 1-2 - Trang 93-120 - 2016
Francesc Carreras1, Guillermo Owen2
1Department of Mathematics and Terrassa School of Industrial, Aerospace and Audiovisual Engineering, Universitat Politècnica de Catalunya (UPC), Terrassa, Spain
2Department of Mathematics, Naval Postgraduate School, Monterey, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alonso-Meijide, J. M., & Carreras, F. (2011). The proportional coalitional Shapley value. Expert Systems with Applications, 38, 6967–6979.

Alonso-Meijide, J. M., Carreras, F., Costa, J., & García-Jurado, I. (2015). The proportional partitional Shapley value. Discrete Applied Mathematics, 187, 1–11.

Aumann, R. J., & Drèze, J. (1974). Cooperative games with coalition structures. International Journal of Game Theory, 3, 217–237.

Carreras, F., & Owen, G. (2011). Pure bargaining problems and the Shapley rule. Homo Oeconomicus, 28, 379–404.

Carreras, F., & Owen, G. (2013). Pure bargaining problems and the Shapley rule. In M. J. Holler & H. Nurmi (Eds.) Power, voting, and voting power: 30 years after (pp. 681–702). Springer, Berlin.

Hart, S., & Mas–Colell, A. (1988). The potential of the Shapley value. In A. E. Roth (Ed.) The shapley value: Essays in honor of Lloyd S. Shapley (pp. 127–137). Cambridge University Press, Cambridge.

Owen, G. (1977). Values of games with a priori unions. In R. Henn & O. Moeschlin (Eds.) Mathematical economics and game theory (pp. 76–88). Springer, Berlin.

Owen G. (2013). Game theory, Fourth edn. Emerald Group Publishing Limited.

Roth, A. E. (Ed.). (1988). The Shapley Value: Essays in Honor of Lloyd S. Shapley: Cambridge University Press.

Shapley, L.S. (1953). A value for $$n$$ n -person games. Annals of Mathematical Studies, 28, 307–317.

van den Brink, R., & Funaki, Y. (2009). Axiomatizations of a class of equal surplus sharing solutions for TU-games. Theory and Decision, 67, 303–340.