Pumpkin Peel Valorization Using Green Extraction Technology to Obtain β-Carotene Fortified Mayonnaise

Keziban Kübra Güngör1, Mehmet Torun1
1Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Esparza, I., Jiménez-Moreno, N., Bimbela, F., Ancín-Azpilicueta, C., Gandía, L.M.: Fruit and vegetable waste management: conventional and emerging approaches. J. Environ. Manag. (2020). https://doi.org/10.1016/j.jenvman.2020.110510

Shetty, A.A., Rana, R., Buckseth, T., Preetham, S.P.: Waste utilization in cucurbits: a review. Waste Biomass Valoriz. (2012). https://doi.org/10.1007/s12649-012-9114-x

Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., Lobo, M.G.: Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comp. Rev. Food Sci. Food Saf. (2018). https://doi.org/10.1111/1541-4337.12330

Jayesree, N., Hang, P.K., Priyangaa, A., Krishnamurthy, N.P., Ramanan, R.N., Turki, M.A., Ooi, C.W.: Valorisation of carrot peel waste by water-induced hydrocolloidal complexation for extraction of carote and pectin. Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2021.129919

Duque-Acevedo, M., Belmonte-Ureña, L.J., Yakovleva, N., Camacho-Ferre, F.: Analysis of the circular economic production models and their approach in agriculture and agricultural waste biomass management. Int. J. Environ. Res. Public Health (2020). https://doi.org/10.3390/ijerph17249549

Saini, A., Panesar, P.S., Bera, M.B.: Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. (2019). https://doi.org/10.1186/s40643-019-0261-9

Martins, N., Ferreira, I.C.: Wastes and by-products: upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends Food Sci. Technol. 62, 33–48 (2017)

da Silva Lima, R., Nunes, I.L., Block, J.M.: Ultrasound-assisted extraction for the recovery of carotenoids from Guava’s pulp and waste powders. Plant Foods Hum. Nutr. (2020). https://doi.org/10.1007/s11130-019-00784-0

Stoica, A., Dobre, T., Stroescu, M., Sturzoiu, A., Pârvulescu, O.C.: From laboratory to scale-up by modelling in two cases of β-carotene extraction from vegetable products. Food Bioprod. Process. (2015). https://doi.org/10.1016/j.fbp.2014.02.005

Gul, K., Tak, A., Singh, A.K., Singh, P., Yousuf, B., Wani, A.A.: Chemistry, encapsulation, and health benefits of β-carotene-A review. Cogent Food Agric. (2015). https://doi.org/10.1080/23311932.2015.1018696

Goulson, M.J., Warthesen, J.J.: Stability and antioxidant activity of beta carotene in conventional and high oleic canola oil. J. Food Sci. (1999). https://doi.org/10.1111/j.1365-2621.1999.tb12267.x

Lee, C.H., Cho, J.K., Lee, S.J., Koh, W., Park, W., Kim, C.H.: Enhancing β-carotene content in Asian noodles by adding pumpkin powder. Cereal Chem. (2002). https://doi.org/10.1094/CCHEM.2002.79.4.593

Kulczyński, B., Gramza-Michalowska, A.: The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars. Molecules (2019). https://doi.org/10.3390/molecules24183212

Singh, A., Kumar, V.: Cultivars effect on the physical characteristics of pumpkin (Cucurbita moschata duch.) seeds and kernels. J. Inst. Eng. (India) A 101(4), 631–641 (2020). https://doi.org/10.1007/s40030-020-00460-6

Dhiman, A.K., Sharma, K., Attri, S.: Functional constitutents and processing of pumpkin: a review. J. Food Sci. Technol. 46(5), 411 (2009)

Norfezah, M.N., Hardacre, A., Brennan, C.S.: Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Sci. Technol. Int. 17(4), 367–373 (2011). https://doi.org/10.1177/1082013210382484

Cuco, R.P., Cardozo-Filho, L., da Silva, C.: Simultaneous extraction of seed oil and active compounds from peel of pumpkin (Cucurbita maxima) using pressurized carbon dioxide as solvent. J. Supercrit. Fluids 143, 8–15 (2019). https://doi.org/10.1016/j.supflu.2018.08.002

Rico, X., Gullón, B., Alonso, J.L., Yáñez, R.: Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: an overview. Food Res. Int. 132, 109086 (2020). https://doi.org/10.1016/j.foodres.2020.109086

Hussain, A., Kausar, T., Din, A., Murtaza, M.A., Jamil, M.A., Noreen, S., et al.: Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). J. Food Process. Preserv. 45(6), e15542 (2021)

Kim, M.Y., Kim, E.J., Kim, Y.N., Choi, C., Lee, B.H.: Comparison of the chemical compositions and nutritive values of various pumpkin (cucurbitaceae) species and parts. Nutr. Res. Pract. 6(1), 21–27 (2012). https://doi.org/10.4162/nrp.2012.6.1.21

Li, Y., Fabiano-Tixier, A.S., Tomao, V., Cravotto, G., Chemat, F.: Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason. Sonochem. 20(1), 12–18 (2013). https://doi.org/10.1016/j.ultsonch.2012.07.005

Boukroufa, M., Boutekedjiret, C., Chemat, F.: Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resour.-Eff. Technol. 3(3), 252–262 (2017). https://doi.org/10.1016/j.reffit.2017.08.007

Chutia, H., Mahanta, C.L.: Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: optimization, comparison, kinetics, and thermodynamic studies. Innov. Food Sci. Emerg. Technol. 67, 102547 (2021)

Jalali-Jivan, M., Abbasi, S., Fathi-Achachlouei, B.: Lutein extraction by microemulsion technique: evaluation of stability versus thermal processing and environmental stresses. LWT 149, 111839 (2021). https://doi.org/10.1016/j.lwt.2021.111839

Portillo-López, R., Morales-Contreras, B.E., Lozano-Guzmán, E., Basilio-Heredia, J., Muy-Rangel, M.D., Ochoa-Martínez, L.A., Morales-Castro, J.: Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: optimization of extraction parameters. J. Food Sci. 86(7), 3122–3136 (2021). https://doi.org/10.1111/1750-3841.15815

Chemat, F., Abert Vian, M., Ravi, H.K., Khadhraoui, B., Hilali, S., Perino, S., Fabiano Tixier, A.S.: Review of alternative solvents for green extraction of food and natural products: panorama, principles, applications and prospects. Molecules 24(16), 3007 (2019). https://doi.org/10.3390/molecules24163007

Parjikolaei, B.R., El-Houri, R.B., Fretté, X.C., Christensen, K.V.: Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste. J. Food Eng. 155, 22–28 (2015). https://doi.org/10.1016/j.jfoodeng.2015.01.009

Yara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A.S., Chemat, F.: Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules 22(9), 1474 (2017). https://doi.org/10.3390/molecules22091474

Elik, A., Yanık, D.K., Göğüş, F.: Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT 123, 109100 (2020). https://doi.org/10.1016/j.lwt.2020.109100

Mezzomo, N., Maestri, B., dos Santos, R.L., Maraschin, M., Ferreira, S.R.: Pink shrimp (P. brasiliensis and P. paulensis) residue: influence of extraction method on carotenoid concentration. Talanta 85(3), 1383–1391 (2011). https://doi.org/10.1016/j.talanta.2011.06.018

Goula, A.M., Ververi, M., Adamopoulou, A., Kaderides, K.: Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason sonochem. 34, 821–830 (2017). https://doi.org/10.1016/j.ultsonch.2016.07.022

Rahimi, S., Mikani, M.: Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: application in tomato processing wastes. Microchem. J. 146, 1033–1042 (2019). https://doi.org/10.1016/j.microc.2019.02.039

Amiri-Rigi, A., Abbasi, S.: Microemulsion-based lycopene extraction: effect of surfactants, co-surfactants and pretreatments. Food Chem. 197, 1002–1007 (2016). https://doi.org/10.1016/j.foodchem.2015.11.077

Jalali-Jivan, M., Abbasi, S., Scanlon, M.G.: Microemulsion as nanoreactor for lutein extraction: optimization for ultrasound pretreatment. J. Food Biochem. 43(8), e12929 (2019). https://doi.org/10.1111/jfbc.12929

Tsogtoo, B., Taarji, N., Melanie, H., Khalid, N., Tsolmon, S., Kobayashi, I., Nakajima, M.: Emulsion-based extraction of β-sitosterol and carotenoids from sea buckthorn (Hippophae rhamnoides) pomace. Int. Food Res. J. 27(1), 56–65 (2020)

Amiri-Rigi, A., Abbasi, S., Scanlon, M.G.: Enhanced lycopene extraction from tomato industrial waste using microemulsion technique: optimization of enzymatic and ultrasound pre-treatments. Innov. Food Sci. Emerg. Technol. 35, 160–167 (2016). https://doi.org/10.1016/j.ifset.2016.05.004

Roohinejad, S., Oey, I., Everett, D.W., Niven, B.E.: Evaluating the effectiveness of β-carotene extraction from pulsed electric field-treated carrot pomace using oil-in-water microemulsion. Food Bioprocess. Technol. 7(11), 3336–3348 (2014). https://doi.org/10.1007/s11947-014-1334-6

Baria, B., Upadhyay, N., Singh, A.K., Malhotra, R.K.: Optimization of ‘green’extraction of carotenoids from mango pulp using split plot design and its characterization. LWT 104, 186–194 (2019). https://doi.org/10.1016/j.lwt.2019.01.044

Kunthakudee, N., Sunsandee, N., Chutvirasakul, B., Ramakul, P.: Extraction of lycopene from tomato with environmentally benign solvents: Box-Behnken design and optimization. Chem. Eng. Commun. 207(4), 574–583 (2020). https://doi.org/10.1080/00986445.2019.1610882

Nour, V., Corbu, A.R., Rotaru, P., Karageorgou, I., Lalas, S.: Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas Aceites 69(1), e238–e238 (2018). https://doi.org/10.3989/gya.0994171

Sachindra, N.M., Mahendrakar, N.S.: Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour. Technol. 96(10), 1195–1200 (2005). https://doi.org/10.1016/j.biortech.2004.09.018

Handayani, A.D., Indraswati, N., Ismadji, S.: Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: studies of extraction kinetics and thermodynamic. Bioresour. Technol. 99(10), 4414–4419 (2008). https://doi.org/10.1016/j.biortech.2007.08.028

Purohit, A.J., Gogate, P.R.: Ultrasound-assisted extraction of β-carotene from waste carrot residue: effect of operating parameters and type of ultrasonic irradiation. Sep. Sci. Technol. 50(10), 1507–1517 (2015). https://doi.org/10.1080/01496395.2014.978472

Ordoñez-Santos, L.E., Martínez-Girón, J., Rodríguez-Rodríguez, D.X.: Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. Dyna 86(209), 91–96 (2019)

Salazar-González, C.Y., Rodríguez-Pulido, F.J., Stinco, C.M., Terrab, A., Díaz-Moreno, C., Fuenmayor, C., Heredia, F.J.: Carotenoid profile determination of bee pollen by advanced digital image analysis. Comput. Electron. Agric. 175, 105601 (2020). https://doi.org/10.1016/j.compag.2020.105601

Salami, A., Asefi, N., Kenari, R.E., Gharekhani, M.: Extraction of pumpkin peel extract using supercritical CO2 and subcritical water technology: enhancing oxidative stability of canola oil. J. Food Sci. Technol. 58(3), 1101–1109 (2021). https://doi.org/10.1007/s13197-020-04624-x

Sharma, M., Bhat, R.: Extraction of carotenoids from pumpkin peel and pulp: comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods 10(4), 787 (2021). https://doi.org/10.3390/foods10040787

Okoro, E.E., Nnaji, C.G., Sanni, S.E., Ahuekwe, E.F., Igwilo, K.C.: Evaluation of a naturally derived waste brown oil extract for demulsification of crude oil emulsion. Energy Explor. Exploit. 38(4), 905–922 (2020). https://doi.org/10.1177/0144598720905080

Mehmood, T., Ahmed, A., Ahmad, A., Ahmad, M.S., Sandhu, M.A.: Optimization of mixed surfactants-based β-carotene nanoemulsions using response surface methodology: an ultrasonic homogenization approach. Food Chem. 253, 179–184 (2018). https://doi.org/10.1016/j.foodchem.2018.01.136

Evanuarini, H., Hastuti, P.: Characteristic of low fat mayonnaise containing porang flour as stabilizer. Pak. J. Nutr. 14(7), 392–395 (2015)

Huang, L., Wang, T., Han, Z., Meng, Y., Lu, X.: Effect of egg yolk freezing on properties of mayonnaise. Food Hydrocoll. 56, 311–317 (2016). https://doi.org/10.1016/j.foodhyd.2015.12.027

Alizadeh, L., Abdolmaleki, K., Nayebzadeh, K., Shahin, R.: Effects of tocopherol, rosemary essential oil and Ferulago angulata extract on oxidative stability of mayonnaise during its shelf life: a comparative study. Food Chem. 285, 46–52 (2019). https://doi.org/10.1016/j.foodchem.2019.01.028

Park, C.H., Bong, S.J., Lim, C.J., Kim, J.K., Park, S.U.: Transcriptome analysis and metabolic profiling of green and red mizuna (Brassica rapa L. var. japonica). Foods 9(8), 1079 (2020)

Stroppa V., Ribeiro A., Luccas V., Grimaldi R., Gonçalves L., Kieckbusch T.: Influence of soy lecithin and PGPR levels in chocolate crystallization behavior. International Congress on Engineering and Food. http://www.icef11.org/content/papers/epf/EPF1081

Anonymous: Codex General Standard for Fats and Oils CODEX STAN 19-1981, Rev. 2-19991999

Flamminii, F., Di Mattia, C.D., Sacchetti, G., Neri, L., Mastrocola, D., Pittia, P.: Physical and sensory properties of mayonnaise enriched with encapsulated olive leaf phenolic extracts. Foods 9(8), 997 (2020). https://doi.org/10.3390/foods9080997

Worrasinchai, S., Suphantharika, M., Pinjai, S., Jamnong, P.: β-Glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll. 20(1), 68–78 (2006). https://doi.org/10.1016/j.foodhyd.2005.03.005

Santipanichwong, R., Suphantharika, M.: Carotenoids as colorants in reduced-fat mayonnaise containing spent brewer’s yeast β-glucan as a fat replacer. Food Hydrocoll. 21(4), 565–574 (2007). https://doi.org/10.1016/j.foodhyd.2006.07.003

Nour, V.: Oxidative stability, physico-chemical and sensory properties of mayonnaise enriched with carotenoids from sea buckthorn pomace during refrigerated storage. J. Food Nutr. Res. 60(2), 168–177 (2021)

Haniff, M.: Yahaya, SA, Aziz, NS, Wan Mustapha, WA, Sofian-Seng, NS, Rahman, HA, Lim, SJ: Development of carotenoid-rich mayonnaise using Carotino oil. J. Food Process. Preserv. 44(9), e14688 (2020). https://doi.org/10.1111/jfpp.14688

Li, C.Y., Kim, H.W., Li, H., Lee, D.C., Rhee, H.I.: Antioxidative effect of purple corn extracts during storage of mayonnaise. Food Chem. 152, 592–596 (2014). https://doi.org/10.1016/j.foodchem.2013.11.152

Depree, J.A., Savage, G.P.: Physical and flavour stability of mayonnaise. Trends Food Sci. Technol. 12(5–6), 157–163 (2001)

Kaur, D., Wani, A.A., Singh, D.P., Sogi, D.S.: Shelf life enhancement of butter, ice-cream, and mayonnaise by addition of lycopene. Int. J. Food Prop. 14(6), 1217–1231 (2011). https://doi.org/10.1080/10942911003637335

Kwon, H., Ko, J.H., Shin, H.S.: Evaluation of antioxidant activity and oxidative stability of spice-added mayonnaise. Food Sci. Biotechnol. 24(4), 1285–1292 (2015). https://doi.org/10.1007/s10068-015-0165-1

Salami, A., Asefi, N., Kenari, R.E., Gharekhani, M.: Addition of pumpkin peel extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. J. Food Meas. Charact. 14(5), 2433–2442 (2020). https://doi.org/10.1007/s11694-020-00491-4