Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance
Tóm tắt
Từ khóa
Tài liệu tham khảo
Z. Wang and C. Wang, Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath. Res. 7, 037109 (2013)
C. Wang and P. Sahay, Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors 9, 8230–8261 (2009)
M. Righettoni, A. Tricoli, S.E. Pratsinis, Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 22, 3152–3157 (2010)
Q.-Q. Jia, H.-m.. Ji, D.-H. Wang, X. Bai, X.-H. Sun, Z.-G. Jin, Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A 2, 13602–13611 (2014)
H. Shan et al., Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B 184 243–247 (2013)
X. Sun, H. Ji, X. Li, S. Cai, C. Zheng, Mesoporous In2O3 with enhanced acetone gas-sensing property. Mater. Lett. 120, 287–291 (2014)
W.Q. Li et al., Synthesis of hollow SnO2 nanobelts and their application in acetone sensor. Mater. Lett 132, 338–341 (2014)
Q. Qi et al., Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery. Sens. Actuators B 134 166–170 (2008)
S.H. Yan et al., Preparation of SnO2-ZnO hetero-nanofibers and their application in acetone sensing performance. Mater. Lett. 159, 447–450 (2015)
X.B. Li, Porous spheres-like ZnO nanostructures as sensitive gas sensors for acetone detection. Mater. Lett. 100, 119–123 (2013)
D. An, Y. Li, X. Lian, Y. Zou, G. Deng, Synthesis of porous ZnO structures for gas sensor and photocatalytic applications. Colloid. Surf. A 447, 81–87 (2014)
X. Li, Y. Chang, Y. Long, Influence of Sn doping on ZnO sensing properties for ethanol and acetone. Mater. Sci. Eng. C 32, 817–821 (2012)
C.S. Prajapati and P.P. Sahay, Influence of In doping on the structural, optical and acetone sensing properties of ZnO nanoparticulate thin films. Mater. Sci. Semicond. Process. 16, 200–210 (2013)
G.H. Zhang et al., Morphology controlled syntheses of Cr doped ZnO single-crystal nanorods for acetone gas sensor. Mater. Lett. 165, 83–86 (2016)
F. Tian, Y. Liu, K. Guo, Au nanoparticle modified flower-like ZnO structures with their enhanced properties for gas sensing. Mater. Sci. Semicond. Process. 21, 140–145 (2014)
Y. Zeng et al., Growth and selective acetone detection based on ZnO nanorod arrays, Sens. Actuators B 143, 93–98 (2009)
J. Luo et al., The mesoscopic structure of flower-like ZnO nanorods for acetone detection. Mater. Lett. 121, 137–140 (2014)
S.B. Khan, M. Faisal, M.M. Rahman, A. Jamal, Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor. Talanta 85, 943–949 (2011)
H. Bian et al., Improvement of acetone gas sensing performance of ZnO nanoparticles. J. Alloys Compd. 658, 629–635 (2016)
S.S. Nath, M. Choudhury, D. Chakdar, G. Gope, R.K. Nath, Acetone sensing property of ZnO quantum dots embedded on PVP. Sens. Actuators B 148, 353–357 (2010)
I. Sta et al., Hydrogen sensing by sol-gel grown NiO and NiO:Li thin films. J. Alloys Compd. 626, 87–92 (2015)
X.-j. Wang, W. Wang, Y.-L. Liu, Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO. Sens. Actuators B 168, 39–45 (2012)
Y. Lin et al., Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decorated flower-like ZnO microstructures. J. Alloys Compd. 650, 37–44 (2015)
M. Kandyla, C. Chatzimanolis-Moustakas, E.P. Koumoulos, C. Charitidis, M. Kompitsas, Nanocomposite NiO:Au hydrogen sensors with high sensitivity and low operating temperature. Mater. Res. Bull. 49, 552–559 (2014)
I. Sta et al., Surface functionalization of sol-gel grown NiO thin films with palladium nanoparticles for hydrogen sensing. Int. J. Hydrog Energy 41, 3291–3298 (2016)
Y.-C. Liang, W.-K. Liao, X.-S. Deng, Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures. J. Alloys Compd. 599, 87–92 (2014)
R. Khandelwal et al., Effects of deposition temperature on the structural and morphological properties of thin ZnO films fabricated by pulsed laser deposition. Opt. Laser Technol. 40, 247–251 (2008)
A. Klini, A. Manousaki, D. Anglos, C. Fotakis, Growth of ZnO thin films by ultraviolet pulsed-laser ablation: study of plume dynamics. J. Appl. Phys. 98, 123301 (2005)
I. Fasaki, M. Kandyla, M. Kompitsas, Properties of pulsed laser deposited nanocomposite NiO:Au thin films for gas sensing applications, Appl. Phys. A 107 (2012) 899–904.
I. Fasaki, M. Kandyla, M.G. Tsoutsouva, M. Kompitsas, Optimized hydrogen sensing properties of nanocomposite NiO:Au thin films grown by dual pulsed laser deposition. Sens. Actuators B 176, 103–109 (2013)
E. Gyorgy, J. Santiso, A. Figueras, A. Giannoudakos, M. Kompitsas, I.N. Mihailescu, Morphology evolution and local electric properties of Au nanoparticles on ZnO thin films. J. Appl. Phys. 98, 84302 (2005)
N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001)
M. El-Maazawi, A.N. Finken, A.B. Nair, V.H. Grassian, Adsorption and photocatalytic oxidation of acetone on TiO2: an in situ transmission FT-IR study. J. Catal. 191, 138–146 (2000)
A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)