Pulse-level beam-switching for terahertz networks

Wireless Networks - Tập 25 - Trang 3047-3062 - 2018
Jian Lin1, Mary Ann Weitnauer2
1IBM Corporation, Atlanta, Georgia
2School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia

Tóm tắt

Communication in Terahertz (THz) band is envisioned as a promising technology to meet the ever-growing data rate demand, and to enable new applications in both nano-scale and macro-scale wireless paradigms. In this study, we propose the first system-level design that is suitable for THz communication in macro-scale range with 100+ Gbps data rate. The design is based on the proposed terahertz pulse-level beam-switching with energy control (TRPLE), and motivated by the rise in Graphene-based electronics, which include not only compact generator and detector for pulse communication, but also the capability of beam scanning aided with nano-antenna-arrays. The very high path loss seen in THz wireless channel requires the use of narrow beam to reach longer transmission ranges. On the other hand, impulse radio that emits femtosecond-long pulses allows the beam direction to steer at pulse-level, rather than at packet-level. For TRPLE, we mathematically analyze the data rate for an arbitrary wireless link under the THz channel characteristics and the energy modulation scheme. Then, a novel optimization model is formulated to solve the parameters of the inter-pulse separation and the inter-symbol separation, in order to maximize the data rate while meeting the interference requirement. With the optimization, the data rate of 167 Gbps is shown achievable for most users in 20-m range. A MAC protocol framework is then presented to harness the benefits of the pulse separation optimization.

Tài liệu tham khảo

Akyildiz, I. F., & Jornet, J. M. (2016). Realizing ultra-massive mimo (1024 × 1024) communication in the (0.06-10) terahertz band. Nano Communication Networks, 8, 46–54. Akyildiz, I. F., Jornet, J. M., & Pierobon, M. (2011). Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84–89. Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Teranets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Communications, 21(4), 130–135. An, X., Venkatesha Prasad, R., & Niemegeers, I. (2011). Impact of antenna pattern and link model on directional neighbor discovery in 60 GHz networks. IEEE Transactions on Wireless Communications, 10(5), 1435–1447. Beckmann, P., & Spizzichino, A. (1987). The scattering of electromagnetic waves from rough surfaces (p. 1). Norwood: Artech House Inc. Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access, 5, 21497–21507. Cacciapuoti, A. S., Subramanian, R., Chowdhury, K. R., & Caleffi, M. (2017). Software-defined network controlled switching between millimeter wave and terahertz small cells. http://arxiv.org/abs/1702.02775. Choudhury, R., Yang, X., Ramanathan, R., & Vaidya, N. (2006). On designing MAC protocols for wireless networks using directional antennas. IEEE Transactions on Mobile Computing, 5(5), 477–491. Esquius-Morote, M., Gomez-Diaz, J., & Perruisseau-Carrier, J. (2014). Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Transactions on Terahertz Science and Technology, 4(1), 116–122. Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(11), 111101–111122. Huang, K. C., & Wang, Z. (2011). Terahertz terabit wireless communication. IEEE Microwave Magazine, 12(4), 108–116. Jornet, J., & Akyildiz, I. (2011a). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221. Jornet, J., & Akyildiz, I. (2011b). Information capacity of pulse-based wireless nanosensor networks. In IEEE SECON (pp. 80–88). Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 31(12), 685–694. Knap, W., Teppe, F., Dyakonova, N., Coquillat, D., & Łusakowski, J. (2008). Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission. Journal of Physics: Condensed Matter, 20(38), 384205. Koch, M. (2007). Terahertz communications: A 2020 vision. In Terahertz frequency detection and identification of materials and objects (pp. 325–338). Netherlands: Springer. Korakis, T., Jakllari, G., & Tassiulas, L. (2008). CDR-MAC: A protocol for full exploitation of directional antennas in ad hoc wireless networks. IEEE Transactions on Mobile Computing, 7(2), 145–155. Liberti, J., & Rappaport, T. (1996). A geometrically based model for line-of-sight multipath radio channels. In Vehicular technology conference (pp. 844–848, Vol. 2). Lin, C., & Li, G. Y. L. (2016). Terahertz communications: An array-of-subarrays solution. IEEE Communications Magazine, 54(12), 124–131. Lin, J., & Weitnauer, M. (2014). Pulse-level beam-switching MAC with energy control in picocell terahertz networks. In Proceedings of IEEE GLOBECOM (pp. 4460–4465). Llatser, I., Cabellos-Aparicio, A., Alarcn, E., Jornet, J. M., Mestres, A., Lee, H., et al. (2015). Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale. IEEE Transactions on Communications, 63(1), 324–333. Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In INFOCOM 2009 (pp. 2871–2875). IEEE. Ning, J., Kim, T. S., Krishnamurthy, S. V., & Cordeiro, C. (2011). Directional neighbor discovery in 60 GHz indoor wireless networks. Performance Evaluation, 68(9), 897–915. Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015a). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676. Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015b). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742. Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., & Kurner, T. (2005). Terahertz characterisation of building materials. Electronics Letters, 41(18), 1002–1004. Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebel, J., et al. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. IEEE Antennas and Propagation Magazine, 49(6), 24–39. Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad hoc networking with directional antennas: A complete system solution. IEEE Journal on Selected Areas in Communications, 23(3), 496–506. Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056. Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113. Singh, S., Ziliotto, F., Madhow, U., Belding, E., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multihop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413. Tamagnone, M., Gomez-Diaz, J., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102. Vicarelli, L., Vitiello, M., Coquillat, D., Lombardo, A., Ferrari, A., Knap, W., et al. (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11(10), 865–871. Vien, Q. T., Agyeman, M. O., Le ,T. A., & Mak, T. (2017). On the nanocommunications at THz band in graphene-enabled wireless network-on-chip. Mathematical Problems in Engineering (Article ID 9768604). Yildirim, F., & Liu, H. (2009). A cross-layer neighbor-discovery algorithm for directional 60-GHz networks. IEEE Transactions on Vehicular Technology, 58(8), 4598–4604. Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487. Yu, Y. J., Zhao, Y., Ryu, S., Brus, L. E., Kim, K. S., & Kim, P. (2009). Tuning the graphene work function by electric field effect. Nano Letters, 9(10), 3430–3434. Zhang, X., Zhou, S., Wang, X., Niu, Z., Lin, X., Zhu, D., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE International Conference on Communications (ICC) (pp. 4803–4807). IEEE.