Pulsar wind nebula origin of the LHAASO-detected ultra-high energy γ-ray sources

Astronomy and Astrophysics - Tập 660 - Trang A8 - 2022
M. Breuhaus1, Brian Reville1, J. A. Hinton1
1Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany

Tóm tắt

The recent measurement by LHAASO of gamma-ray emission extending up to hundreds of TeV from multiple Galactic sources represents a major observational step forward in the search for the origin of the Galactic cosmic rays. The burning question is if this ultra-high-energy emission is associated with the acceleration of protons and/or nuclei to PeV energies, or if it can be associated with PeV-electron accelerators. A strong Klein-Nishina suppression of inverse Compton emission at these energies is unavoidable; nevertheless, we show here that inverse Compton emission can provide a natural explanation for the measured emission and that an association with the established PeV-electron accelerating source class of pulsar wind nebulae is also rather natural. However, a clear distinction between different models requires taking multi-wavelength data into account, having good knowledge of the local environmental conditions, and, in some cases, performing multi-source modelling.

Từ khóa


Tài liệu tham khảo

Abeysekara, 2017, Science, 358, 911, 10.1126/science.aan4880

Abeysekara, 2020, Phys. Rev. Lett., 124, 021102, 10.1103/PhysRevLett.124.021102

Agaronyan, 1985, Astrophysics, 23, 650, 10.1007/BF01008222

Aharonian, 2009, A&A, 499, 723, 10.1051/0004-6361/200811357

Albert A., Alfaro R., Ashkar H., et al. 2019, ArXiv e-prints [arXiv:1902.08429]

Albert, 2021, ApJ, 911, L27, 10.3847/2041-8213/abf4dc

Albert, 2021, ApJ, 907, L30, 10.3847/2041-8213/abd77b

Amato, 2021, Universe, 7, 448, 10.3390/universe7110448

Amenomori, 2019, Phys. Rev. Lett., 123, 051101, 10.1103/PhysRevLett.123.051101

Amenomori, 2021, Phys. Rev. Lett., 127, 031102, 10.1103/PhysRevLett.127.031102

Robitaille, 2013, A&A, 558, A33, 10.1051/0004-6361/201322068

Price-Whelan, 2018, AJ, 156, 123, 10.3847/1538-3881/aac387

Atoyan, 1999, MNRAS, 302, 253, 10.1046/j.1365-8711.1999.02172.x

Bell, 2013, Astropart. Phys., 43, 56, 10.1016/j.astropartphys.2012.05.022

Blumenthal, 1970, Rev. Mod. Phys., 42, 237, 10.1103/RevModPhys.42.237

Breuhaus, 2021, ApJ, 908, L49, 10.3847/2041-8213/abe41a

Breuhaus M., Hahn J., Romoli C., et al. 2021b, Int. Cosmic Ray Conf., 37

Cao, 2021, Nature, 594, 33, 10.1038/s41586-021-03498-z

Cao, 2021, Science, 373, 425, 10.1126/science.abf3427

Cherenkov T. A. C., Acharya B. S., et al. 2019, Science with the Cherenkov Telescope Array

Crestan, 2021, MNRAS, 505, 2309, 10.1093/mnras/stab1422

Di Mauro, 2021, Phys. Rev. D, 104, 103002, 10.1103/PhysRevD.104.103002

Duvidovich, 2019, A&A, 623, A115, 10.1051/0004-6361/201834590

Duvidovich, 2020, MNRAS, 491, 5732, 10.1093/mnras/stz3414

Evoli, 2018, Phys. Rev. D, 98, 063017, 10.1103/PhysRevD.98.063017

Fujita, 2021, ApJ, 912, 133, 10.3847/1538-4357/abf14a

Ge, 2021, The Innovation, 2, 100118, 10.1016/j.xinn.2021.100118

Giacinti, 2018, ApJ, 863, 18, 10.3847/1538-4357/aacffb

Gould, 1978, ApJ, 225, 318, 10.1086/156493

Hahn, 2015, Int. Cosmic R. Conf., 34, 917

Harris, 2020, Nature, 585, 357, 10.1038/s41586-020-2649-2

Hillas, 1984, ARA&A, 22, 425, 10.1146/annurev.aa.22.090184.002233

Hinton, 2007, ApJ, 657, 302, 10.1086/510283

Hunter, 2007, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.55

Kothes, 2006, ApJ, 638, 225, 10.1086/498666

Lagage, 1983, A&A, 125, 249

Liu, 2020, ApJ, 897, L34, 10.3847/2041-8213/ab9ff2

Popescu, 2017, MNRAS, 470, 2539, 10.1093/mnras/stx1282

Sironi, 2015, Space Sci. Rev., 191, 519, 10.1007/s11214-015-0181-8

Sudoh, 2021, JCAP, 8, 010, 10.1088/1475-7516/2021/08/010

Amenomori, 2021, Nat. Astron., 5, 460, 10.1038/s41550-020-01294-9

Vernetto, 2016, Phys. Rev. D, 94, 063009, 10.1103/PhysRevD.94.063009

Virtanen, 2020, Nat. Methods, 17, 261, 10.1038/s41592-019-0686-2

Yu, 2022, New Astron., 90, 101669, 10.1016/j.newast.2021.101669

Zdziarski, 1993, ApJ, 409, L33, 10.1086/186853