Pulmonary defense and the human cathelicidin hCAP-18/LL-37
Tóm tắt
Antimicrobial peptides form an important component of the innate immune system. The cathelicidin family, a key member of the antimicrobial peptide defenses, has been highly conserved throughout evolution. Though widespread in mammals, there is currently only one identified human example, hCAP-18/LL-37. The cathelicidins have been found to have multiple functions, in addition to their known antimicrobial and lipopolysaccharide-neutralizing effects. As a result, they profoundly affect both innate and adaptive immunity. Currently, antimicrobial peptides are being evaluated as therapeutic drugs in disease states as diverse as oral mucositis, cystic fibrosis, and septic shock. One such peptide, the cathelicidin hCAP-18/LL-37, is reviewed in detail in the context of its role in lung physiology and defense.
Tài liệu tham khảo
Hackett C: Innate immune activation as a broad-spectrum biodefense strategy: prospects and research challenges. J Allergy Clin Immunol 2003;112(4):686–694.
Fluhr R, Kaplan-Levy RN: Plant disease resistance: commonality and novelty in multicellular innate immunity. Curr Top Microbiol Immunol 2002;270:23–46.
Boman HG: Antibacterial peptides: basic facts and emerging concepts. J Intern Med 2003;254(3):197–215.
Ganz T: Defensins: antimicrobial peptides of innate immunity. Nature Rev Immunol 2003;3(9):710–720.
Larrick JW, Hirata M, Balint RF, et al.: Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 1995;63(4):1291–1297.
Gennaro R, Skerlavaj B, Romeo D: Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun 1989;57(10): 3142–3146.
Basanez G, Shinnar AE, Zimmerberg J: Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett 2002;532(1–2):115–120.
Gudmundsson GH, Agerberth B, Odeberg J, et al.: The human gene FALL 39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 1996;238(2):325–332.
Zanetti M, Gennaro R, Romeo D: Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995; 374(1):1–5.
Sorensen OE, Follin P, Johnsen AH, et al.: Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001;97(12):3951–3959.
Sorensen OE, Gram L, Johnsen AH, et al.: Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J Biol Chem 2003;278(31)28540–28546.
Sorensen O, Cowland JB, Askaa J, Borregaard N: An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J Immunol Methods 1997;206 (1–2):53–59.
Carlsson G, Fasth A: Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original “Kostmann family” and a review. Acta Paediatr 2001;90(7):757–764.
Zanetti M: Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004;75(1):39–48.
Marchini G, Lindow S, Brismar H, et al.: The newborn infant is protected by an innate antimicrobial barrier: peptide antibiotics are present in the skin and vernix caseosa. Br J Dermatol 2002;147(6):1127–1134.
Sorensen O, Amljots K, Cowland JB, et al.: The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 1997;90(7):2796–2803.
Nagaoka I, Hirata M, Sugimoto K, et al.: Evaluation of the expression of human CAP18 gene during neutrophil maturation in the bone marrow. J Leukoc Biol 1998; 64(6):845–852.
Tomasinsig L, Scocchi M, Di Loreto C, et al.: Inducible expression of an antimicrobial peptide of the innate immunity in polymorphonuclear leukocytes. J Leukoc Biol 2002;72(5):1003–1010.
Ong PY, Ohtake T, Brandt C, et al.: Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002;347(15):1151–1160.
Dorschner RA, Pestonjamasp VK, Tamakuwala S, et al.: Cutaneous injury induces the release of cathelicidin antimicrobial peptides active against group A Streptococcus. J Invest Dermatol 2001;117(1):91–97.
Dorschner RA, Lin KH, Murakami M, Gallo RL: Neonatal skin in mice and humans expresses increased levels of antimicrobial peptides: innate immunity during development of the adaptive response. Pediatr Res 2003; 53(4):566–572.
Wu H, Zhang G, Minton JE, et al.: Regulation of cathelicidin gene expression: induction by lipopolysaccharide, interleukin-6, retinoic acid, and Salmonella enterica serovar typhimurium infection. Infect Immun 2000; 68(10):5552–5558.
Larrick JW, Hirata M, Zheng H, et al.: A novel granulocyte-derived peptide with lipopolysaccharide-neutralizing activity. J Immunol 1994;152(1):231–240.
Kirikae T, Hirata M, Yamasu H, et al.: Protective effects of a human 18-kilodalton cationic antimicrobial protein (CAP18)-derived peptide against murine endotoxemia. Infect Immun 1998;66(5):1861–1868.
Scott MG, Davidson DJ, Gold MR, et al.: The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002; 169(7):3883–3891.
Davidson DJ, Currie AJ, Reid GS, et al.: The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 2004;172(2):1146–1156.
Niyonsaba F, Someya A, Hirata M, et al.: Evaluation of the effects of peptide antibiotics human beta-defensins-1/−2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 2001;31(4):1066–1075.
Heilborn JD, Nilsson MF, Kratz G, et al.: The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 2003;120(3): 379–389.
Dinarello CA: Biologic basis for interleukin-1 in disease. Blood 1996;87(6):2095–2147.
Ganz T: Antimicrobial polypeptides in host defense of the respiratory tract. J Clin Invest 2002;109(6):693–697.
Liu L, Roberts AA, Ganz T: By IL-1 signaling, monocyte-derived cells damatically enhance the epidermal antimicrobial response to lipopolysaccharide. J Immunol 2003;170(1):575–580.
Perregaux DG, Bhavsar K, Contillo L, et al.: Tntimicrobial peptides initiate IL-1 β posttranslational processing: a novel role beyond innate immunity. J Immunol 2002;168(6):3024–3032.
Elssner A, Duncan M, Kotur M, et al.: The human cathelicidin-derived peptide LL-37 induces secretion of IL-1 beta via transient ATP release and activation of the P2X receptor. J Immunol 2003;172(8):4987–4994.
Chertov O, Michiel DF, Xu L, et al.: Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 1996;271(6): 2935–2940.
Agerberth B, Charo J, Werr J, et al.: The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000;96(9):3086–3093.
De Yang, Chen Q, Schmidt AP, et al.: LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000;192(7):1069–1074.
Niyonsaba F, Iwabuchi K, Someya A, et al.: A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 2002;106(1):20–26.
Koczulla R, von Degenfeld G, Kupatt C, et al.: An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003;111(11):1665–1672.
Turner J, Cho Y, Dinh NN, et al.: Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 1998;42(9): 2206–2214.
Howell MD, Jones JF, Kisich KO, et al.: Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 2004;172(3):1763–1767.
Guthmiller JM, Vargas KG, Srikantha R, et al.: Susceptibilities of oral bacteria and yeast to mammalian cathelicidins. Antimicrob Agents Chemother 2001;45(11)3216–3219.
Henzler Wildman KA, Dong-Kuk L, Ramamoorthy A: Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 2003;42(21): 6545–6558.
Travis SM, Anderson NN, Forsyth WR, et al.: Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 2000;68(5):2748–2755.
Saiman L, Tabibi S, Starner TD, et al.: Cathelicidin peptides inhibit multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob Agents Chemother 2001;45(10):2838–2844.
Sambri V, Marangoni A, Giacani L, et al.: Comparative in vitro activity of five cathelicidin-derived synthetic peptides against Leptospira, Borrelia and Treponema pallidum. J Antimicrob Chemother 2002;50(6):895–902.
Zaiou M, Nizet V, Gallo RL: Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 2003; 120(5):810–816.
Shafer WM, Qu X, Waring AJ, Lehrer RI: Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci USA 1998;95(4):1829–1833.
Lysenko ES, Gould J, Bals R, et al.: Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun 2000;68(3):1664–1671.
Schmidtchen A, Frick IM, Andersson E, et al.: Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 2002;46(1):157–168.
Islan D, Bandholtz L, Nilsson J, et al.: Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulaton. Nat Med 2001;7(2):180–185.
Weiner DJ, Bucki R, Janmey PA: The antimicrobial activity of the cathelicidin LL37 is inhibited by F-actin bundles and restored by gelsolin. Am J Respir Cell Mol Biol 2003;28(6):738–745.
Bals R, Wang X, Wu Z, et al.: Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 1998;102(5):874–880.
Rennard S, Romberger D: Host defenses and pathogenesis. Semin Respir Infect 2000;15(1):7–13.
Canner P: Clearance of particles from the human tracheobronchial tree. Clin Sci (Lond) 1980;59(2): 79–84.
Welsh DA, Mason CM: Host defense in respiratory infections. Med Clin North Am 2001;85(6):1329–1347.
Anderson RN, Smith BL: Deaths: leading causes for 2001. Natl Vital Stat Rep 2003;52(9):1–85.
Travis SM, Conway BA, Zabner J, et al.: Activity of abundant antimicrobials of the human airway. Am J Respir Cell Mol Biol 1999;20(5):872–879.
Singh PK, Jia HP, Wiles K, et al.: Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci USA 1998;95(25):14961–14966.
Bals R, Wang X, Zasloff M, Wilson JM: The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 1998;95(16):9541–9546.
Remer KA, Brcic M, Jungi TW: Toll-like receptor-4 is involved in eliciting an LPS-induced oxidative burst in neutrophils. Immunol Lett 2002;85(1):75–80.
Netea MG, van der Graaf C, Van der Meer JWM, Jan-Kullberg B: Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J Leukoc Biol 2004;75(5):749–755.
Lambrecht BN, Prins JB, Hoogsteden HC: Lung dendritic cells and host immunity to infection. Eur Respir J 2001;18(4):692–704.
Sinigaglia F, D'Ambrosio D: Regulation of helper T cell differentiation and recruitment in airway inflammation. Am J Respir Crit Care Med 2000;162(4):175S-160.
Woo JS, Jeong JY, Hwang YJ, et al.: Expression of cathelicidin in human salivary glands. Arch Otolaryngol Head Neck Surg 2003;129(2):211–214.
van der Reijden WA, Vissink A, Veerman ECI, Amerongen AVN: Treatment of oral dryness related complaints (xerostomia) in Sjogren's syndrome. Ann Rheum Dis 1999;58(8):465–474.
Dale BA, Kimball JR, Krisanaprakornkit S, et al.: Localized antimicrobial peptide expression in human gingiva. J Periodontal Res 2001;36(5):285–294.
Celis R, Torres A, Gatell JM, et al.: Nosocomial pneumonia. A multivariate analysis of risk and prognosis. Chest 1988;93(2):318–324.
Kim ST, Cha HE, Kim DY, et al.: Antimicrobial peptide LL-37 is upregulated in chronic nasal inflammatory disease. Acta Otolaryngol 2003;123(1):81–85.
Smith JJ, Travis SM, Greenberg E, Welsh MJ: Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 1996;85(2):229–236.
Goldman MJ, Anderson GM, Stolzenberg ED, et al.: Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997;88(4):553–560.
Kennedy MJ: Current status of gene therapy for cystic fibrosis pulmonary disease. Am J Respir Med 2002; 1(5):349–360.
Bals R, Weiner DJ, Meegalla RL, Wilson JM: Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 1999;103(8):1113–1117.
Schaller-Bals S, Schulze A, Bals R: Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 2002;165(7):992–995.
Agerberth B., Grunewald J, Castanos-Velez, E, et al.: Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 1999;160(1):283–290.
Repine JE: Interleukin-1-mediated acute lung injury and tolerance to oxidative injury. Environ Health Perspect 1994;102 Suppl. 10:75–78.
Fahy RJ, Elssner A, Wewers MD: The antimicrobial peptide LL-37/hCAP-18 is elevated in early ARDS. Am J Respir Crit Care. Med 2003;167(7):A759.
Toney JH: Iseganan (IntraBiotics pharmaceuticals). Curr Opin Invest Drugs 2002;3(2):225–228.
Cole AM, Waring AJ: The role of defensins in lung biology and therapy. Am J Respir Med 2002;1(4):249–259.
Warren HS, Matyal R, Allaire JE, et al.: Protective efficacy of CAP18106-138-immunoglobulin G in sepsis. J Infect Dis 2003;188(9):1382–1393.
Gennaro R, Scocchi M, Merluzzi L, Zanetti M: Biological characterization of a novel mammalian antimicrobial peptide. Biochim Biophys Acta 1998;1425(2):361–368.
Lusitani D, Malawista SE, Montgomery RR: Borrelia burgdorferi are susceptible to killing by a variety of human polymorphonuclear leukocyte components. J Infect Dis 2002;185(6):797–804.
Larrick JW, Morgan JG, Palings I, et al.: Complementary DNA sequence of rabbit CAP18: a unique lipopolysaccharide binding protein. Biochem Biophys Res Commun 1991;179(1):170–175.
Nagaoka I, Hirota S, Niyonsaba F, et al.: Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-α by blocking the binding of LPS to CD14+Cells. J Immunol 2001;167(6):3329–3338.