Pullback attractors for a critical degenerate wave equation with time-dependent damping
Tài liệu tham khảo
B. Franchi, E. Lanconelli, Une métrique associée à une class d’opérateurs elliptiques dégénérés, in: Conference on Linear Partial and Pseudodifferential Operators, Torino, 1982, Rend. Sem. Mat. Univ. Politec., Torino 1983, 1984, pp. 105–114, (special issue).
Franchi, 1983, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10, 523
Franchi, 1984, An embedding theory for Sobolev spaces related to non-smooth vector fields and Harnack inequality, Comm. Partial Differential Equations, 9, 1237, 10.1080/03605308408820362
Garofalo, 1996, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49, 1081, 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
Lanconelli, 2000, X-elliptic operators and X-control distances, Ric. Mat., 49, 223
Gutiérrez, 2003, Maximum principle, nonhomogeous harnack inequality, and Liouville theorems for X-elliptic operators, Comm. Partial Differential Equations, 28, 1833, 10.1081/PDE-120025487
Kogoj, 2016, Hardy type inequalities for △λ-Laplacians, Complex Var. Elliptic Equ., 61, 422, 10.1080/17476933.2015.1088530
Kogoj, 2009, Liouville theorem for X-elliptic operators, Nonlinear Anal., 70, 2974, 10.1016/j.na.2008.12.029
Jeffreys, 1999
Joly, 2018, Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation, J. Math. Soc. Japan, 70, 1375, 10.2969/jmsj/77667766
Caraballo, 2010, A gradient-like nonautonomous evolution process, Internat. J. Bifur. Chaos, 20, 2751, 10.1142/S0218127410027337
Caraballo, 2011, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74, 2272, 10.1016/j.na.2010.11.032
Chueshov, 2008
Chepyzhov, 2002
Hale, 1988
Babin, 1992
Ball, 2004, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10, 31, 10.3934/dcds.2004.10.31
Kogoj, 2014, Attractors met X-elliptic operators, J. Math. Appl. Anal., 420, 407, 10.1016/j.jmaa.2014.05.070
Kogoj, 2013, Attractor for a class of semi-linear degenerate parablic equations, J. Evol. Equ., 13, 675, 10.1007/s00028-013-0196-0
Li, 2017, Global attractor for degenerate damped hyperbolic equations, J. Math. Anal. Appl., 453, 1, 10.1016/j.jmaa.2017.03.077
Carvalho, 2013
Chueshov, 2015
Adams, 1975
Cholewa, 2000
Chueshov, 2007, Long-time dynamics of von Karman semi-flow with non-linear boundary/interior damping, J. Differential Equations, 233, 42, 10.1016/j.jde.2006.09.019
Sun, 2006, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19, 2645, 10.1088/0951-7715/19/11/008
Ma, 2017, Dynamics of wave equations with moving boundary, J. Differential Equations, 262, 3317, 10.1016/j.jde.2016.11.030