Pullback Attractors for a Nonlocal Nonautonomous Evolution Model in $$\mathbb {R}^N$$
Tóm tắt
In this work we consider the nonlocal evolution equation with time-dependent terms which arises in models of phase separation in $$\mathbb {R}^N$$$$\begin{aligned} \partial _t u=- u + g \left( \beta (J*u) +\beta h(t)\right) \end{aligned}$$under some restrictions on h, growth restrictions on the nonlinear term g and $$\beta >1$$. We prove the existence, regularity and upper-semicontinuity of pullback attractors with respect to functional parameter h(t) in some weighted spaces.
Tài liệu tham khảo
citation_journal_title=J. Math. Anal. Appl.; citation_title=Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with nonlocal terms,; citation_author=FDM Bezerra, AL Pereira, SH Silva; citation_volume=396; citation_publication_date=2012; citation_pages=590-600; citation_doi=10.1016/j.jmaa.2012.06.042; citation_id=CR1
citation_journal_title=Nonlinear Anal.; citation_title=A non-autonomous strongly damped wave equation: existence and continuity of the pullback attractor.; citation_author=T Caraballo, AN Carvalho, JA Langa, F Rivero; citation_volume=74; citation_issue=6; citation_publication_date=2011; citation_pages=2272-2283; citation_doi=10.1016/j.na.2010.11.032; citation_id=CR2
citation_journal_title=Internat. J. Bifur. Chaos; citation_title=A gradient-like nonautonomous evolution processes; citation_author=T Caraballo, AN Carvalho, JA Langa, F Rivero; citation_volume=20; citation_issue=9; citation_publication_date=2010; citation_pages=2751-2760; citation_doi=10.1142/S0218127410027337; citation_id=CR3
Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for infinite-dimensional nonautonomous dynamical systems. Applied Mathematical Sciences, vol. 182. Springer, New York (2012)
Chepyzhov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics. In: Colloquium Publications, vol. 49. America Mathematical Society, Providence, RI (2002)
citation_journal_title=Nonlinear Anal.; citation_title=Propagation speed of travelling fronts in nonlocal reaction-diffusion equations; citation_author=J Coville, L Dupaigne; citation_volume=60; citation_publication_date=2005; citation_pages=797-819; citation_doi=10.1016/j.na.2003.10.030; citation_id=CR6
citation_journal_title=Eletron. J. Differ. Equ.; citation_title=Existence and upper semicontinuity of global attractors for nueral fields in an unbounded domain; citation_author=SH Silva; citation_volume=138; citation_publication_date=2010; citation_pages=1-12; citation_id=CR7
citation_journal_title=Electron. J. Differ. Equ.; citation_title=Properties of an equation for neural fields in a bounded domain; citation_author=SH Silva; citation_volume=2012; citation_issue=42; citation_publication_date=2012; citation_pages=1-9; citation_id=CR8
citation_journal_title=Arch. Ration. Mech. Anal.; citation_title=Travelling fronts in non local evolution equations; citation_author=A Masi, T Gobron, E Presutti; citation_volume=132; citation_publication_date=1995; citation_pages=143-205; citation_doi=10.1007/BF00380506; citation_id=CR9
citation_journal_title=Nonlinearity; citation_title=Glauber evolution with Kac potentials: I. Mesoscopic and macroscopic limits, interface dynamics; citation_author=A Masi, E Orlandi, E Presutti, L Triolo; citation_volume=7; citation_publication_date=1994; citation_pages=633-696; citation_doi=10.1088/0951-7715/7/3/001; citation_id=CR10
citation_journal_title=Non Linear Anal. Theory Methods Appl.; citation_title=On the bounded solutions of a non linear convolution equation; citation_author=O Diekmann, HG Kaper; citation_volume=2; citation_publication_date=1978; citation_pages=721-737; citation_doi=10.1016/0362-546X(78)90015-9; citation_id=CR11
citation_journal_title=Arch. Ration. Mech. Anal.; citation_title=The approach of solutions of nonlinear diffusion equations to travelling front solutions; citation_author=P Fife, JB McLeod; citation_volume=65; citation_publication_date=1977; citation_pages=335-361; citation_doi=10.1007/BF00250432; citation_id=CR12
citation_journal_title=J. Math. Phys.; citation_title=On the Van der Waals theory of vapor-liquid equilibrium. I. Discussion of a one dimensional model; citation_author=M Kac, G Uhlenbeck, PC Hemmer; citation_volume=4; citation_publication_date=1963; citation_pages=216-228; citation_doi=10.1063/1.1703946; citation_id=CR13
citation_journal_title=J. Math. Phys.; citation_title=On the Van der Waals theory of vapor-liquid equilibrium. II. Discussion of the distribution functions; citation_author=M Kac, G Uhlenbeck, PC Hemmer; citation_volume=4; citation_publication_date=1963; citation_pages=229-247; citation_doi=10.1063/1.1703947; citation_id=CR14
citation_journal_title=J. Math. Phys.; citation_title=On the Van der Waals theory of vapor-liquid equilibrium. III. Discussion of the critical region; citation_author=M Kac, G Uhlenbeck, PC Hemmer; citation_volume=5; citation_publication_date=1964; citation_pages=60-74; citation_doi=10.1063/1.1704065; citation_id=CR15
citation_journal_title=J. Differ. Equ. Appl.; citation_title=Pullback attractors in nonautonomous difference equations; citation_author=PE Kloeden; citation_volume=6; citation_issue=1; citation_publication_date=2000; citation_pages=33-52; citation_doi=10.1080/10236190008808212; citation_id=CR16
citation_journal_title=Syst. Control Lett.; citation_title=Asymptotic behaviour of non-autonomous difference inclusions; citation_author=PE Kloeden, B Schmalfuß; citation_volume=33; citation_publication_date=1998; citation_pages=275-280; citation_doi=10.1016/S0167-6911(97)00107-2; citation_id=CR17
citation_title=Interacting particle systems; citation_publication_date=1985; citation_id=CR18; citation_author=TM Ligget; citation_publisher=Springer-Verlag
citation_journal_title=J. Differ. Equ.; citation_title=Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain; citation_author=AL Pereira; citation_volume=226; citation_publication_date=2006; citation_pages=352-372; citation_doi=10.1016/j.jde.2006.03.016; citation_id=CR19
citation_journal_title=São Paulo J. Math. Sci.; citation_title=Existence of global attractors and gradient property for a class of nonlocal evolution equations; citation_author=AL Pereira, SH Silva; citation_volume=2; citation_publication_date=2008; citation_pages=1-20; citation_doi=10.11606/issn.2316-9028.v2i1p1-20; citation_id=CR20
citation_journal_title=Discrete Continuous Dyn. Syst.; citation_title=Continuity of global attractors for a class of nonlocal evolution equations; citation_author=AL Pereira, SH Silva; citation_volume=26; citation_publication_date=2010; citation_pages=1073-1100; citation_doi=10.3934/dcds.2010.26.1073; citation_id=CR21
citation_journal_title=Trans. Am. Math. Soc.; citation_title=Nonautonomous differential equations and dynamical systems; citation_author=GR Sell; citation_volume=127; citation_publication_date=1967; citation_pages=241-283; citation_id=CR22