Pullback Attractors for a Nonlocal Nonautonomous Evolution Model in $$\mathbb {R}^N$$

Differential Equations and Dynamical Systems - Tập 28 Số 1 - Trang 87-105 - 2020
Bezerra, Flank D. M.1, Pereira, Miriam da S.1, da Silva, Severino H.2
1Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, Brazil
2Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande, Brazil

Tóm tắt

In this work we consider the nonlocal evolution equation with time-dependent terms which arises in models of phase separation in $$\mathbb {R}^N$$$$\begin{aligned} \partial _t u=- u + g \left( \beta (J*u) +\beta h(t)\right) \end{aligned}$$under some restrictions on h, growth restrictions on the nonlinear term g and $$\beta >1$$. We prove the existence, regularity and upper-semicontinuity of pullback attractors with respect to functional parameter h(t) in some weighted spaces.

Tài liệu tham khảo

citation_journal_title=J. Math. Anal. Appl.; citation_title=Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with nonlocal terms,; citation_author=FDM Bezerra, AL Pereira, SH Silva; citation_volume=396; citation_publication_date=2012; citation_pages=590-600; citation_doi=10.1016/j.jmaa.2012.06.042; citation_id=CR1 citation_journal_title=Nonlinear Anal.; citation_title=A non-autonomous strongly damped wave equation: existence and continuity of the pullback attractor.; citation_author=T Caraballo, AN Carvalho, JA Langa, F Rivero; citation_volume=74; citation_issue=6; citation_publication_date=2011; citation_pages=2272-2283; citation_doi=10.1016/j.na.2010.11.032; citation_id=CR2 citation_journal_title=Internat. J. Bifur. Chaos; citation_title=A gradient-like nonautonomous evolution processes; citation_author=T Caraballo, AN Carvalho, JA Langa, F Rivero; citation_volume=20; citation_issue=9; citation_publication_date=2010; citation_pages=2751-2760; citation_doi=10.1142/S0218127410027337; citation_id=CR3 Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for infinite-dimensional nonautonomous dynamical systems. Applied Mathematical Sciences, vol. 182. Springer, New York (2012) Chepyzhov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics. In: Colloquium Publications, vol. 49. America Mathematical Society, Providence, RI (2002) citation_journal_title=Nonlinear Anal.; citation_title=Propagation speed of travelling fronts in nonlocal reaction-diffusion equations; citation_author=J Coville, L Dupaigne; citation_volume=60; citation_publication_date=2005; citation_pages=797-819; citation_doi=10.1016/j.na.2003.10.030; citation_id=CR6 citation_journal_title=Eletron. J. Differ. Equ.; citation_title=Existence and upper semicontinuity of global attractors for nueral fields in an unbounded domain; citation_author=SH Silva; citation_volume=138; citation_publication_date=2010; citation_pages=1-12; citation_id=CR7 citation_journal_title=Electron. J. Differ. Equ.; citation_title=Properties of an equation for neural fields in a bounded domain; citation_author=SH Silva; citation_volume=2012; citation_issue=42; citation_publication_date=2012; citation_pages=1-9; citation_id=CR8 citation_journal_title=Arch. Ration. Mech. Anal.; citation_title=Travelling fronts in non local evolution equations; citation_author=A Masi, T Gobron, E Presutti; citation_volume=132; citation_publication_date=1995; citation_pages=143-205; citation_doi=10.1007/BF00380506; citation_id=CR9 citation_journal_title=Nonlinearity; citation_title=Glauber evolution with Kac potentials: I. Mesoscopic and macroscopic limits, interface dynamics; citation_author=A Masi, E Orlandi, E Presutti, L Triolo; citation_volume=7; citation_publication_date=1994; citation_pages=633-696; citation_doi=10.1088/0951-7715/7/3/001; citation_id=CR10 citation_journal_title=Non Linear Anal. Theory Methods Appl.; citation_title=On the bounded solutions of a non linear convolution equation; citation_author=O Diekmann, HG Kaper; citation_volume=2; citation_publication_date=1978; citation_pages=721-737; citation_doi=10.1016/0362-546X(78)90015-9; citation_id=CR11 citation_journal_title=Arch. Ration. Mech. Anal.; citation_title=The approach of solutions of nonlinear diffusion equations to travelling front solutions; citation_author=P Fife, JB McLeod; citation_volume=65; citation_publication_date=1977; citation_pages=335-361; citation_doi=10.1007/BF00250432; citation_id=CR12 citation_journal_title=J. Math. Phys.; citation_title=On the Van der Waals theory of vapor-liquid equilibrium. I. Discussion of a one dimensional model; citation_author=M Kac, G Uhlenbeck, PC Hemmer; citation_volume=4; citation_publication_date=1963; citation_pages=216-228; citation_doi=10.1063/1.1703946; citation_id=CR13 citation_journal_title=J. Math. Phys.; citation_title=On the Van der Waals theory of vapor-liquid equilibrium. II. Discussion of the distribution functions; citation_author=M Kac, G Uhlenbeck, PC Hemmer; citation_volume=4; citation_publication_date=1963; citation_pages=229-247; citation_doi=10.1063/1.1703947; citation_id=CR14 citation_journal_title=J. Math. Phys.; citation_title=On the Van der Waals theory of vapor-liquid equilibrium. III. Discussion of the critical region; citation_author=M Kac, G Uhlenbeck, PC Hemmer; citation_volume=5; citation_publication_date=1964; citation_pages=60-74; citation_doi=10.1063/1.1704065; citation_id=CR15 citation_journal_title=J. Differ. Equ. Appl.; citation_title=Pullback attractors in nonautonomous difference equations; citation_author=PE Kloeden; citation_volume=6; citation_issue=1; citation_publication_date=2000; citation_pages=33-52; citation_doi=10.1080/10236190008808212; citation_id=CR16 citation_journal_title=Syst. Control Lett.; citation_title=Asymptotic behaviour of non-autonomous difference inclusions; citation_author=PE Kloeden, B Schmalfuß; citation_volume=33; citation_publication_date=1998; citation_pages=275-280; citation_doi=10.1016/S0167-6911(97)00107-2; citation_id=CR17 citation_title=Interacting particle systems; citation_publication_date=1985; citation_id=CR18; citation_author=TM Ligget; citation_publisher=Springer-Verlag citation_journal_title=J. Differ. Equ.; citation_title=Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain; citation_author=AL Pereira; citation_volume=226; citation_publication_date=2006; citation_pages=352-372; citation_doi=10.1016/j.jde.2006.03.016; citation_id=CR19 citation_journal_title=São Paulo J. Math. Sci.; citation_title=Existence of global attractors and gradient property for a class of nonlocal evolution equations; citation_author=AL Pereira, SH Silva; citation_volume=2; citation_publication_date=2008; citation_pages=1-20; citation_doi=10.11606/issn.2316-9028.v2i1p1-20; citation_id=CR20 citation_journal_title=Discrete Continuous Dyn. Syst.; citation_title=Continuity of global attractors for a class of nonlocal evolution equations; citation_author=AL Pereira, SH Silva; citation_volume=26; citation_publication_date=2010; citation_pages=1073-1100; citation_doi=10.3934/dcds.2010.26.1073; citation_id=CR21 citation_journal_title=Trans. Am. Math. Soc.; citation_title=Nonautonomous differential equations and dynamical systems; citation_author=GR Sell; citation_volume=127; citation_publication_date=1967; citation_pages=241-283; citation_id=CR22