Pterocarpus marsupium Roxb. heartwood extract synthesized chitosan nanoparticles and its biomedical applications
Tóm tắt
The point of the present investigation was to blend effective chitosan nanoparticles (CNPs) loaded with Pterocarpus marsupium (PM) heartwood extract and evaluate its biomedical applications. Various plant extract concentrations (PM-CNPs-1, PM-CNPs-2, PM-CNPs-3) are used to synthesize chitosan nanoparticles and optimized to acquire a stable nanoparticle formulation. The entrapment efficiency and in vitro release studies of the plant extract encapsulated in CNPs are estimated. The PM-loaded CNPs were characterized by X-ray diffraction, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized chitosan nanoparticles were evaluated for their alpha-amylase inhibitory activity and inhibition of albumin denaturation activity. The XRD pattern of PM-CNPs shows less number of peaks at low intensity due to the interaction of chitosan with sodium tripolyphosphate. The FT-IR spectrum with peaks at 1639.55 and 1149.02 cm−1 confirms the formation of chitosan nanoparticles. The size of the nanoparticles ranges between 100 and 110 nm with spherical shape illustrated by SEM and TEM analysis. The nanoparticle formulation with 10% plant extract concentration (PM-CNPs-2) showed optimum particle size, higher stability, enhanced entrapment efficiency, and sustained drug release characteristics. Synthesized chitosan nanoparticles have shown a significant increase in alpha-amylase inhibition and appreciable anti-inflammatory activity as measured by inhibition of protein denaturation. The investigation reports the eco-friendly, cost-effective method for synthesizing chitosan nanoparticles loaded with Pterocarpus marsupium Rox.b heartwood extract.
Tài liệu tham khảo
Colvin VL, Schlamp MC, Alivisatos A (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357. https://doi.org/10.1038/370354a0
Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525–532 https://doi.org/10.1021/j100155a009
Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. J Adv Drug Delivery Reviews 47:65–81. https://doi.org/10.1016/s0169-409x(00)00122-8
Jafarizadeh-Malmiri H, Gaz-Jahanian MA, Berenjian A (2012) Potential applications of Chitosan nanoparticles as novel support in enzyme immobilization. Am J Biochem Biotechnol 8:203–219. https://doi.org/10.3844/ajbbsp.2012.203.219
Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727 https://doi.org/10.1021/cr00016a002
Ye M, Lian X, Huaping T, Ming F, Jianliang L, Yang J, Zhonghua L, Yong C, Xiaohong H (2017) Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater Sci Eng 81:522–531. https://doi.org/10.1016/j.msec.2017.08.052
Nitta S, Kaketani S, Iwamoto H (2015) Development of chitosan-nanofiber-based hydrogels exhibiting high mechanical strength and pH-responsive controlled release. Eur. Polym. J. 67, 50–56 DOI: 10.1016.
Castro S.P.M, Lizarraga Paulin E.G (2012) Chitosan a new panacea? Areas of application. In The Complex World of Polysaccharides. Intech: Luxembourg 3-46 DOI: https://doi.org/10.5772/51200.
Song H, Su C, Cui W, Zhu B, Liu L, Chen Z, Zhao L (2013) Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. Biomed Res Int. Article ID:723158. DOI: 10. 1155/2013/7231.
Bhatta R S, Chandasanab H, Chhonker Y S, Rathi C, Kumar D, Mitra K, Shukla P K (2012) Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharma 432(1–2) 105–112 DOI: 105–112 https://doi.org/10.1016/j.ijpharm.2012.04.060.
Harde H, Agrawal AK, Jain S (2014) Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine 9(16):2511–2529. https://doi.org/10.2217/nnm.%2013.225
Alex S M, Rekha M R, Sharma C P (2011) Spermine grafted galactosylated chitosan for improved nanoparticle-mediated gene delivery. Int J Pharm 410(1–2):125–137. DOI: doi.org/10.1016/j.ijpharm.2011.02.067
Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001
Choudhari YM, Detane SV, Kulthe SS, Godhani CC, Inamdar NN, Shirolikar SM, Borde LC, Mourya VK (2012) Low molecular weight palmitoyl chitosan: synthesis, characterization, and nanoparticle preparation. Adv Mater Lett 3(6):487–492. https://doi.org/10.5185/amlett.2012.icnano.203
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size-dependent. Pharm Res 14(11):1568–1573. https://doi.org/10.1023/a:1012126301290
Kumari A, Kumar V, Yadav S K (2012) Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS One 7(7):e41230 DOI: doi.org/10.1371/journal.pone.0041230.
Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:105–114. https://doi.org/10.1016/s0168-3659(02)00127-x
Gupta A, Bonde S R, Gaikwad S, Ingle A, Gade A K, Rai M (2013) Lawsonia inermis mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotech. DOI:10. 1049/iet-nbt.2013.0015.
Servat-Medina LV (2015) Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity Foglio. Int J Nanomedicine 10:3897–3909. https://doi.org/10.2147/IJN.S83705
Abeer Ramadan Mohamed Abd El-Aziz, Monira Rashed Al-Othman, Mohamed Abobakr Mahmoud, Shereen Mohamed Shehata, and Nahla Shazli Abadelazim (2018) Chitosan nanoparticles as a carrier for Mentha longifolia extract: synthesis, characterization and antifungal activity. Curr Sci 114 (10) DOI: 10.18520.
Devi C S, Tarafder A And Shishodiya E (2015) Encapsulation of Staphylokinase and Leucasaspera plant extracts using chitosan nanoparticles. Int J Pharmtech Res 7 (4) 654–661.
Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan-based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683 https://doi.org/10.1016/j.ijbiomac.2013.10.012
Wang X, Du Y, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56:21–26 https://doi.org/10.1016/j.carbpol.2003.11.007
Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515. https://doi.org/10.3144/expresspolymlett.2010.64
Brunel F, Gueddari N E E and Moerschbacher B M (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydr. Polym. 92, 1348-1356 DOI: https://doi.org/10.1016/j.carbpol.2012.10.025.
Gamble JS (1935) Flora of the Presidency of Madras. Adlard and Sons Ltd, London, UK
Matthew K M (1983) The Flora of Tamil Nadu Carnatic. St. Josephs College, Tiruchirapalli, India. 1983
Abhishek N, Karunakar H (2017) Pharmacological profile of Pterocarpus marsupium with a note on its therapeutic activity. A Review. International Journal of Pharma and Chemical Research 3(1):32–37
Rout S D, Thatoi H N (2009) Ethnomedicinal practices of Kol tribes in Similipal biosphere reserve, Orissa, India. Ethnobotanical Leaflets 3:1 DOI: https://opensiuc.lib.siu.edu/ebl/vol2009/iss3/1.
Kirtikar B (1987) Indian Medicinal Plants. Materia Medica. 2nd Ed. Vol I. New Delhi 1:826-7. 13.
Mohire NC, Salunkhe VR, Bhise SB, Yadav AV (2007) Cardiotonic activity of aqueous extract of heartwood of. Pterocarpus marsupium 45(6):532–537
Mankani KL, Krishna V, Manjunatha BK, Vidya SM, Singh SJ, Manohara YN (2005) Evaluation of hepatoprotective activity of stem bark of Pterocarpus marsupium Roxb. Indian J Pharm 37(3):165. https://doi.org/10.4103/0253-7613.16213
Hougee S, Faber J, Sanders A, De Jong RB, Van den Berg WB, Garssen J (2005) Selective COX-2 inhibition by a Pterocarpus marsupium extract characterized by pterostilbene, and its activity in healthy human volunteers. Planta Med 71(5):387–392. https://doi.org/10.1055/s-2005-864130
Seshadri TR (1972) Polyphenols of Pterocarpus and Dalbergia wood6s. Phytochemistry 11(3):881–888
Chakraborty BK, Gupta S, Goda KD (1982) Functional 13 cell regeneration in the islet of pancreas in alloxan-induced diabetic rats by epicatechin. Life Sci 31:2693–2697
Rastogi and Mehrotra (1982) Compendium of Indian medicinal plants. PID New Delhi 1993:537
Garcia-Fuentes M, Alonso MJ (2012) Chitosan-based drug nanocarriers: where do we stand? J Control Release 161(2):496–504
Ajazuddin SS (2010) Applications of novel drug delivery system for herbal formulations. Fitoterapia. 81(7):680–689
Bonifacio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15. https://doi.org/10.2147/IJN.S52634
Loic B, Catherine L (2016) Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Prog Polym Sci 60:117. https://doi.org/10.1016/j.jep.2004.03.032
Bagyalakshmi J and Haritha H (2017) Green synthesis and characterization of silver nanoparticles using Pterocarpus marsupium and assessment of its in vitro Antidiabetic activity. American Journal of Advanced Drug Delivery ISSN 2321-547X.
Nguyen V C, Nguyen V B, Hsieh M F (2013) Curcumin-loaded chitosan/gelatin composite sponge for wound healing application, Int. J. Polym. Sci. 7–13 DOI: https://doi.org/10.1155/2013/106570.
Poongunran J, Perera HKI, Fernando WIT, Jayasinghe L, Sivakanesan R (2015) Alpha-glucosidase and alpha-amylase inhibitory activities of nine Sri Lankan antidiabetic plants. British Journal of Pharmaceutical Research 7(5):365–374
Salunkha VR, Yadav AV, Shete AS, Kane SR, Kulkarni AS (2005) Anti-inflammatory activity of extracts of Pterocarpus marsupium and Coccinia indica. Indian Drugs 42(5):319
Agarwal M, Agarwal MK, Shrivastav N, Pandey S, Das R, Gaur P (2018) Preparation of Chitosan Nanoparticles and their In-vitro Characterization. Int J Life Sci Scienti Res 4(2):1713–1720. https://doi.org/10.21276/ijlssr.2018.4.2.17
Nagarwal RC, Singh PN, Kant S, Maiti P, Pandit JK (2011) Chitosan nanoparticles of 5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo study. Chem Pharm Bull 59(2):272–278. https://doi.org/10.1248/cpb.59.272
Keogh JB, Woonton BW, Taylor CM, Janakievski F, Desilva K, Clifton PM (2010) Effect of glycomacropeptide fractions on cholecystokinin and food intake. Br J Nutr 104(2):286–290. https://doi.org/10.1017/S0007114510000280
Borbon AI, Pinheiro AC, Cerquerira MA, Rocha CMR, Avides MC, Quintas MAC, Vaincenta AAJ (2011) Food Eng 106:111
Leung MYK, Fung KP, Choy YM (1997) The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology 35(3):255–263 https://doi.org/10.1016/S0162-3109(96)00157-9
Keawchaoon L, Yoksan R (2011) Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B Biointerfaces 84(1):163–171. https://doi.org/10.1016/j.colsurfb.2010.12.031
Nagaonkar D, Gaikwad SC, Rai M (2015) Catharanthus roseus leaf extract synthesized chitosan nanoparticle controlled in vitro release of chloramphenicol and ketoconazole. Colloid Polym Sci 293(5). https://doi.org/10.1007/s00396-015-3538-3
Yang W, Fu J, Wang T, He N (2009) Chitosan/sodium tripolyphosphate nanoparticles: preparation, characterization, and application as a drug carrier. J Biomed Nanotechnol 5:591–595. https://doi.org/10.1166/jbn.2009.1067
Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. J Colloid Surface B: Biointerfaces 59(1):24–34. https://doi.org/10.1016/j.colsurfb.2007.04.009
Lee KX, Shameli K, Mohammad SE, Yew YP, Isa EDM, Yap HY, Lim WL, Teow SY (2019) Bio-mediated synthesis and characterization of silver nanocarrier, and its potent anticancer action. Nanomaterials (Basel) 9(10):1423. https://doi.org/10.3390/nano9101423
Perera HKI (2016) Antidiabetic effects of Pterocarpus marsupium. European Journal of Medicinal Plants 13(4):1–14
Shymala Rajan Abhinaya, Ramakrishnan Padmini (2018) Biofabrication of zinc oxide nanoparticles using Pterocarpus marsupium and its biomedical applications. Asian Journal of Pharmaceutical and Clinical Research Vol 12, issue 1 DOI: https://doi.org/10.22159/ajpcr.2019.v12i1.28682.
Londonkar RL, Aruna LH, Kanjikar AP (2017) Potential investigation of In Vitro Antioxidant, Anti-Inflammatory and Anti-Haemolytic Activities from Polar Solvent Extracts of Pterocarpus marsupium. International Journal of Pharmacognosy and Phytochemical Research 9(1):100–107
Ahmad H, Rajagopal K (2015) Pharmacology of Pterocarpus marsupium Roxb. Medicinal Plant Research 5(3):1–6. https://doi.org/10.5376/mpr.2015.05.0003
Rajeeb M, Usman M, Pathan EK, Jain BV, Pawar SR (2018) Ethnobotanical Uses, Phytochemistry and Pharmacological Activities of Pterocarpus marsupium. A review of Ph and Sci Innov 2012:1–5. https://doi.org/10.5530/pj.2018.6s.1
Halagappa K, Girish HN, Srinivasan BP (2010) The study of aqueous extract of Pterocarpus marsupium Roxb. on cytokine TNF-α in type 2 diabetic rats. Indian J Pharm 42(6):392–396
Phongpradist R, Chaiyana W, Anuchapreeda S (2015) Curcumin-loaded multi-valent ligands conjugated-nanoparticles for anti-inflammatory activity. Int J Pharm Pharm Sci 7(Suppl 4):203–208
Sangeetha G, Vidhya R (2016) In vitro anti-inflammatory activity of different parts of Pedalium murex (L.) Int J Herb Med 4 Suppl 3:31-36.