Pseudorandom bits for constant depth circuits
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Ajtai, andM. Ben-Or: A theorem on probabilistic constant depth computations,16th STOC, pp. 571?474, 1984.
M. Ajtai, andA. Wigderson: Deterministic simulation of probabilistic constant depth circuits26th FOCS, pp. 11?19, 1985.
L. Babai: Trading group theory for randomness17th STOC, pp. 421?429, 1975.
C. H. Benett, andJ. Gill: Relative to a random oracleA, P A ?NP A ?Co-NP A with probability 1.SIAM J. Comp. 10, 1981.
L. Babai, andS. Moran: Arthur Merlin games: a randomized proof system, and a hierarchy of complexity classes,J. Computer Sys. Sci. 36, pp. 254?276, 1988.
M. Blum, andS. Micali: How to generate cryptographically strong sequences of pseudo random bits.23rd FOCS, pp. 112?117, 1982.
M. Furst, R. J. Lipton, andL. Stoclmeyer: Pseudo random number generation and space complexity,Information and Control,64, 1985.
M. Furst, J. Saxe, andM. Sipser: Parity, Circuits, and the polynomial time hierarchy,22nd FOCS, pp. 260?270, 1981.
S. Goldwasser, andM. Sipser: Private coins vs. Public voins in interactive proof systems,18th STOC, pp. 59?68, 1986.
J. Hastad:Lower Bounds for the Size of Parity Circuits, Ph.D. Thesis, M.I.T., 1987.
J. H. Reif, andJ. D. Tygar: Towards a theory of parallel randomized computation,TR-07-84, Aiken Computation Lab., Harvard University, 1984.
M. Sipser: Expanders, Randomness, or Time vs. Space, Structure in Complexity Theory, Lecture notes in Computer Science, No. 223, Ed. G. Goos, J. Hartmanis, pp. 325?329.