Pseudorandom bits for constant depth circuits

Noam Nisan1
1Department of Computer Science, Hebrew University of Jerusalem, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

L. Adleman: Two theorems on random polynomial time,19th FOCS pp. 75?83, 1978.

M. Ajtai: ? 1 1 formulas on finite structures.Annals of Pure and Applied Logic 24, pp. 1?48. 1983.

M. Ajtai, andM. Ben-Or: A theorem on probabilistic constant depth computations,16th STOC, pp. 571?474, 1984.

M. Ajtai, andA. Wigderson: Deterministic simulation of probabilistic constant depth circuits26th FOCS, pp. 11?19, 1985.

L. Babai: Trading group theory for randomness17th STOC, pp. 421?429, 1975.

C. H. Benett, andJ. Gill: Relative to a random oracleA, P A ?NP A ?Co-NP A with probability 1.SIAM J. Comp. 10, 1981.

L. Babai, andS. Moran: Arthur Merlin games: a randomized proof system, and a hierarchy of complexity classes,J. Computer Sys. Sci. 36, pp. 254?276, 1988.

M. Blum, andS. Micali: How to generate cryptographically strong sequences of pseudo random bits.23rd FOCS, pp. 112?117, 1982.

A. Chandra, D. Kozen, andL. Stockmeyer: Alternation,J. ACM,28, 1981.

M. Furst, R. J. Lipton, andL. Stoclmeyer: Pseudo random number generation and space complexity,Information and Control,64, 1985.

M. Furst, J. Saxe, andM. Sipser: Parity, Circuits, and the polynomial time hierarchy,22nd FOCS, pp. 260?270, 1981.

S. Goldwasser, andS. Micali: Probabilistic Encryption,JCSS,28, No. 2, 1984.

S. Goldwasser, andM. Sipser: Private coins vs. Public voins in interactive proof systems,18th STOC, pp. 59?68, 1986.

J. Hastad:Lower Bounds for the Size of Parity Circuits, Ph.D. Thesis, M.I.T., 1987.

S. A. Kurts: A note on randomized polynomial time,SIAM J. Comp. 16, No. 5, 1987.

N. Nisan, andA. Wigderson: Hardness vs. Randomness,29th FOCS, 1988.

J. H. Reif, andJ. D. Tygar: Towards a theory of parallel randomized computation,TR-07-84, Aiken Computation Lab., Harvard University, 1984.

M. Sipser: A complexity theoretic approach to randomness,15th STOC, 330?335, 1983.

M. Sipser: Expanders, Randomness, or Time vs. Space, Structure in Complexity Theory, Lecture notes in Computer Science, No. 223, Ed. G. Goos, J. Hartmanis, pp. 325?329.

L. Stockmeyer: The polynomial time hierarchy,Theory. Comp. Sci. 3, No. 1, 1976.

A. C. Yao: Theory and applications of trapdoor functions,23rd FOCS, pp. 80?91, 1982.

A. C. Yao: Separating the polynomial time hierarchy by oracles,26th FOCS, pp. 1?10, 1985.