Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Polymutants Reveal an Interplay between HopAD1 and AvrPtoB
Tài liệu tham khảo
Abramovitch, 2003, Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death, EMBO J., 22, 60, 10.1093/emboj/cdg006
Abramovitch, 2006, Bacterial elicitation and evasion of plant innate immunity, Nat. Rev. Mol. Cell Biol., 7, 601, 10.1038/nrm1984
Baltrus, 2011, Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates, PLoS Pathog., 7, e1002132, 10.1371/journal.ppat.1002132
Bao, 2014, Genomic plasticity enables phenotypic variation of Pseudomonas syringae pv. tomato DC3000, PLoS ONE, 9, e86628, 10.1371/journal.pone.0086628
Barrick, 2009, Genome evolution and adaptation in a long-term experiment with Escherichia coli, Nature, 461, 1243, 10.1038/nature08480
Bogdanove, 2000, AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato, Proc. Natl. Acad. Sci. USA, 97, 8836, 10.1073/pnas.97.16.8836
Chang, 2005, A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae, Proc. Natl. Acad. Sci. USA, 102, 2549, 10.1073/pnas.0409660102
Cheng, 2011, Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III Effector, Cell Host Microbe, 10, 616, 10.1016/j.chom.2011.10.013
Chien, 2013, Nonhost resistance of tomato to the bean pathogen Pseudomonas syringae pv. syringae B728a is due to a defective E3 ubiquitin ligase domain in avrptobb728a, Mol. Plant Microbe Interact., 26, 387, 10.1094/MPMI-08-12-0190-R
Cunnac, 2011, Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae, Proc. Natl. Acad. Sci. USA, 108, 2975, 10.1073/pnas.1013031108
de Torres, 2006, Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis, Plant J., 47, 368, 10.1111/j.1365-313X.2006.02798.x
Ekengren, 2003, Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato, Plant J., 36, 905, 10.1046/j.1365-313X.2003.01944.x
Fernandez-Pozo, 2015, The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics, Mol. Plant, 8, 486, 10.1016/j.molp.2014.11.024
Guo, 2009, The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity, Mol. Plant Microbe Interact., 22, 1069, 10.1094/MPMI-22-9-1069
He, 2004, Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death, Plant J., 38, 563, 10.1111/j.1365-313X.2004.02073.x
Jackson, 1999, Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola, Proc. Natl. Acad. Sci. USA, 96, 10875, 10.1073/pnas.96.19.10875
Jones, 2006, The plant immune system, Nature, 444, 323, 10.1038/nature05286
Kvitko, 2007, Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors, J. Bacteriol., 189, 8059, 10.1128/JB.01146-07
Lam, 2014, Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions, PLoS ONE, 9, e106115, 10.1371/journal.pone.0106115
Lin, 2006, Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities, Appl. Environ. Microbiol., 72, 702, 10.1128/AEM.72.1.702-712.2006
Lindeberg, 2006, Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains, Mol. Plant Microbe Interact., 19, 1151, 10.1094/MPMI-19-1151
Lindeberg, 2012, Pseudomonas syringae type III effector repertoires: last words in endless arguments, Trends Microbiol., 20, 199, 10.1016/j.tim.2012.01.003
Liu, 2004, Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus, Plant J., 38, 800, 10.1111/j.1365-313X.2004.02085.x
Marín, 2014, Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors, Chem. Rev., 114, 6912, 10.1021/cr400488d
Martin, 2012, Suppression and activation of the plant immune system by Pseudomonas syringae effectors AvrPto and AvrPtoB, 123
Mathieu, 2014, Pto kinase binds two domains of AvrPtoB and its proximity to the effector E3 ligase determines if it evades degradation and activates plant immunity, PLoS Pathog., 10, e1004227, 10.1371/journal.ppat.1004227
Moeder, 2007, Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana, Plant Mol. Biol., 63, 273, 10.1007/s11103-006-9087-x
Mukhtar, 2011, Independently evolved virulence effectors converge onto hubs in a plant immune system network, Science, 333, 596, 10.1126/science.1203659
Oh, 2011, Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins, J. Biol. Chem., 286, 14129, 10.1074/jbc.M111.225086
Oh, 2007, Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells, J. Bacteriol., 189, 8277, 10.1128/JB.00998-07
Oh, 2010, Components of the Pseudomonas syringae type III secretion system can suppress and may elicit plant innate immunity, Mol. Plant Microbe Interact., 23, 727, 10.1094/MPMI-23-6-0727
Rafiqi, 2012, Challenges and progress towards understanding the role of effectors in plant-fungal interactions, Curr. Opin. Plant Biol., 15, 477, 10.1016/j.pbi.2012.05.003
Rosebrock, 2007, A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity, Nature, 448, 370, 10.1038/nature05966
Salmeron, 1996, Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster, Cell, 86, 123, 10.1016/S0092-8674(00)80083-5
Schechter, 2006, Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins, Mol. Plant Microbe Interact., 19, 1180, 10.1094/MPMI-19-1180
Shames, 2012, Bacterial effector interplay: a new way to view effector function, Trends Microbiol., 20, 214, 10.1016/j.tim.2012.02.007
Singh, 2014, The tomato kinome and the tomato kinase library ORFeome: novel resources for the study of kinases and signal transduction in tomato and solanaceae species, Mol. Plant Microbe Interact., 27, 7, 10.1094/MPMI-08-13-0218-TA
van der Hoorn, 2008, From Guard to Decoy: a new model for perception of plant pathogen effectors, Plant Cell, 20, 2009, 10.1105/tpc.108.060194
Wei, 2007, A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana, Plant J., 51, 32, 10.1111/j.1365-313X.2007.03126.x
Wei, 2013, Consequences of flagellin export through the type III secretion system of Pseudomonas syringae reveal a major difference in the innate immune systems of mammals and the model plant Nicotiana benthamiana, Cell. Microbiol., 15, 601, 10.1111/cmi.12059
Weßling, 2014, Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life, Cell Host Microbe, 16, 364, 10.1016/j.chom.2014.08.004
Zeng, 2011, A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB, Plant J., 69, 92, 10.1111/j.1365-313X.2011.04773.x