Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens

Microbiological Research - Tập 219 - Trang 123-131 - 2019
Marco Andreolli1, Giacomo Zapparoli1, Elisa Angelini2, Gianluca Lucchetta2, Silvia Lampis1, Giovanni Vallini1
1Department of Biotechnology, University of Verona, 37134, Verona, Italy
2Research Centre for Viticulture and Enology, CREA-VE, 31015, Conegliano, TV, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbamondi, 2016, Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids, Chem. Biol. Technol. Agric., 3, 1, 10.1186/s40538-015-0051-3

Abdelwahab, 2016, A Pseudomonas protegens with high antifungal activity protects apple fruits against Botrytis cinerea Gray Mold, Int. J. Sci. Res. Sci. Technol., 6, 227

Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389

Álvarez-Pérez, 2017, Using endophytic and rhizospheric actinobacteria from grapevine plants to reduce fungal graft infections in nurseries that lead to young grapevine decline, Appl. Environ. Microbiol., 83, 10.1128/AEM.01564-17

Ait Barka, 2000, Enhancement of in vitro growth and resistance to gray mold of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria, FEMS Microbiol. Lett., 186, 91, 10.1111/j.1574-6968.2000.tb09087.x

Ait Barka, 2002, Inhibitory effect of bacteria on Botrytis cinerea and its influence to promote the grapevine growth, Biol. Control, 24, 135, 10.1016/S1049-9644(02)00034-8

Ait Barka, 2006, Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans Strain PsJN, Appl. Environ. Microbiol., 72, 7246, 10.1128/AEM.01047-06

Andreolli, 2013, Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons, Chemosphere, 92, 688, 10.1016/j.chemosphere.2013.04.033

Andreolli, 2016, Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control, Microbiol. Res., 18, 42, 10.1016/j.micres.2015.11.009

Andreolli, 2016, Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community, World J. Microbiol. Biotechnol., 32, 6, 10.1007/s11274-015-1967-2

Andreolli, 2017, Diversity, distribution, and functional role of bacterial endophytes in Vitis vinifera, Vol. 1, 233

Bensidhoum, 2016, Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities, Eur. J. Soil Biol., 75, 38, 10.1016/j.ejsobi.2016.04.006

Bell, 1995, Endophytic bacteria in grapevine, Can. J. Microbial., 41, 46, 10.1139/m95-006

Bertani, 2016, Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis, Environ. Microbiol. Rep., 8, 388, 10.1111/1758-2229.12403

Campisano, 2015, Diversity in endophyte populations reveals functional and taxonomic diversity between wild and domesticated grapevines, Am. J. Enol. Vitic., 66, 1, 10.5344/ajev.2014.14046

Cappuccino, 1992

Compant, 2005, Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. Strain PsJN, Appl. Environ. Microbiol., 71, 1685, 10.1128/AEM.71.4.1685-1693.2005

Compant, 2008, Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues, FEMS Microbiol. Ecol., 63, 84, 10.1111/j.1574-6941.2007.00410.x

Compant, 2011, Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization, Microb. Ecol., 62, 188, 10.1007/s00248-011-9883-y

FAOSTAT, 2011. available to http://faostat.fao.org.

Ferrigo, 2017, Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease, Biocontrol, 62, 821, 10.1007/s10526-017-9847-3

Figueroa-López, 2014, A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides, J. Basic Microbiol. Suppl, 1, S125, 10.1002/jobm.201200594

Fox, 2016, Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940, Environ. Microbiol., 18, 3522, 10.1111/1462-2920.13376

Frapolli, 2007, Multilocus sequence analysis of biocontrol fluorescent Pseudomonas spp. producing the antifungal compound 2,4-diacetylphloroglucinol, Environ. Microbiol., 9, 1939, 10.1111/j.1462-2920.2007.01310.x

Furuya, 2011, Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases, Biocontrol Sci. Technol., 21, 705, 10.1080/09583157.2011.574208

Germaine, 2004, Colonisation of poplar trees by gfp expressing bacterial endophytes, FEMS Microbiol. Ecol., 48, 109, 10.1016/j.femsec.2003.12.009

Germaine, 2009, Bacterial endophyte mediated naphthalene phytoprotection and phytoremediation, FEMS Microbiol. Lett., 296, 226, 10.1111/j.1574-6968.2009.01637.x

Gordon, 1951, Colorimetric estimation of indoleacetic acid, Plant Physiol., 26, 192, 10.1104/pp.26.1.192

Gross, 2007, The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters, Chem. Biol., 14, 53, 10.1016/j.chembiol.2006.11.007

Gross, 2009, Genomics of secondary metabolite production by Pseudomonas spp, Nat. Prod. Rep., 26, 1408, 10.1039/b817075b

Hammer, 1995, Characterization of genes from Pseudomonas fluorescens involved in the synthesis of pyrrolnitrin, Phytopathology, 69, 480

Hardoim, 2015, The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes, Microbiol. Mol. Biol. Rev., 79, 293, 10.1128/MMBR.00050-14

Howell, 1979, Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium, Phytopathology, 69, 480, 10.1094/Phyto-69-480

Keel, 1996, Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations, Appl. Environ. Microbiol., 62, 552, 10.1128/AEM.62.2.552-563.1996

Kidarsa, 2011, Phloroglucinol mediates crosstalk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5, Mol. Microbiol., 81, 395, 10.1111/j.1365-2958.2011.07697.x

King, 1954, Two simple media for the demonstration of pyocyanin and fluorescin, J. Lab. Clin. Med., 44, 301

Kraus, 1992, Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber, Phytopathology, 82, 264, 10.1094/Phyto-82-264

Larignon, 1997, Fungi associated with esca disease in grapevine, Eur. J. Plant Pathol., 103, 147, 10.1023/A:1008638409410

Logrieco, 2003, Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops, Eur. J. Plant Pathol., 109, 645, 10.1023/A:1026033021542

Loper, 2007, The genomic sequence of Pseudomonas fluorescens Pf-5: insights into biological control, Phytopathology, 97, 233, 10.1094/PHYTO-97-2-0233

Loper, 2008, Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy, Appl. Environ. Microbiol., 74, 3085, 10.1128/AEM.02848-07

Lòpez-Fernàndez, 2015, Grapevine colonization by endophytic bacteria shifts secondary metabolism and suggests activation of defense pathways, Plant Soil, 405, 155, 10.1007/s11104-015-2631-1

Lo Piccolo, 2016, Detection of bacterial endophytes in Vitis vinifera L. and antibiotic activity against grapevine fungal pathogens, 182

Lorenzini, 2015, Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration, Anton. Leeuw., 108, 1171, 10.1007/s10482-015-0570-8

Lorenzini, 2015, Isolation of Neofusicoccum parvum from withered grapes: strain characterization, pathogenicity and its detrimental effects on passito wine aroma, J. Appl. Microbiol., 119, 1335, 10.1111/jam.12931

Lorenzini, 2013, Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes, J. Appl. Microbiol., 114, 762, 10.1111/jam.12075

Lugtenberg, 2009, Plant-growth-promoting rhizobacteria, Annu. Rev. Microbiol., 63, 541, 10.1146/annurev.micro.62.081307.162918

Masih, 2001, Characterization of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea causing the grey mould disease of grapevine, FEMS Microbiol. Lett., 202, 227, 10.1111/j.1574-6968.2001.tb10808.x

Mavrodi, 2001, Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp, Biol. Control, 91, 35

Michelsen, 2012, Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium, Can. J. Microbiol., 58, 381, 10.1139/w2012-004

Müller, 2016, Fluorescent Pseudomonads in the phyllosphere of wheat: potential antagonists against fungal phytopathogens, Curr. Microbiol., 72, 383, 10.1007/s00284-015-0966-8

Murashige, 1962, Revised medium for rapid growth and bioassays with tobacco cultures, Physiol. Plant., 15, 437, 10.1111/j.1399-3054.1962.tb08052.x

Muyzer, 1993, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Am. Soc. Microbiol., 59, 695

Nabti, 2014, Growth stimulation of barley and biocontrol effect onplant pathogenic fungi by a Cellulosimicrobium sp. strain isolated fromsalt-affected rhizosphere soil in northwestern Algeria, Eur. J. Soil Biol., 61, 20, 10.1016/j.ejsobi.2013.12.008

Nikel, 2014, Biotechnological domestication of pseudomonads using synthetic biology, Nat. Rev. Microbiol., 12, 368, 10.1038/nrmicro3253

Nowak-Thompson, 1994, Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5, Can. J. Microbiol., 40, 1064, 10.1139/m94-168

Olorunleke, 2015, Recent advances in Pseudomonas biocontrol, 167

Penrose, 2003, Methods for isolating and characterizing ACC-deaminase-containing plant growth-promoting rhizobacteria, Physiol. Plantarum, 118, 10, 10.1034/j.1399-3054.2003.00086.x

Philmus, 2015, Investigations into the biosynthesis, regulation and self-resistance of toxoflavin in Pseudomonas protegens Pf-5, Chembiochem, 16, 1782, 10.1002/cbic.201500247

Polano, 2018, Genome sequence and antifungal activity of two niche-sharing Pseudomonas protegens related strains isolated from hydroponics, Microbiol. Ecol., 76, 1

Quecine, 2012, Sugarcane growth promotionby the endophytic bacterium Pantoea agglomerans 33.1, Appl. Environ. Microbiol., 78, 7511, 10.1128/AEM.00836-12

Quecine, 2015, An interspecies signaling system mediated by fusaric acid has parallel effects on antifungal metabolite production by Pseudomonas protegens strain Pf-5 and antibiosis of Fusarium spp, Appl. Environ. Microbiol., 82, 1372, 10.1128/AEM.02574-15

Raaijmakers, 2012, Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria, Annu. Rev. Phytopathol., 50, 403, 10.1146/annurev-phyto-081211-172908

Ramette, 2011, Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin, Syst. Appl. Microbiol., 34, 180, 10.1016/j.syapm.2010.10.005

Rolli, 2017, Root-associated bacteria promote grapevine growth: from the laboratory to the field, Plant Soil, 410, 369, 10.1007/s11104-016-3019-6

Sabir, 2012, Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria (PGPR), J. Sci. Food Agric., 92, 2148, 10.1002/jsfa.5600

Saini, 2016, Identification and characterization of antifungal metabolite producing Pseudomonas protegens strain BNJ-SS-45 isolated from rhizosphere of wheat crop (Triticum aestivum L.), Int. J. Appl. Pure Sci. Agric., 2, 69

Salomon, 2014, Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine, Physiol. Plant., 151, 359, 10.1111/ppl.12117

Sandhya, 2010, Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress, Plant Growth Regul., 2010, 21, 10.1007/s10725-010-9479-4

Sang, 2014, Biocontrol activity and root colonization by Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper, BioControl, 59, 437, 10.1007/s10526-014-9584-9

Sawana, 2014, Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genusBurkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species, Front. Genet., 5, 429, 10.3389/fgene.2014.00429

Schwyn, 1987, Universal chemical assay for the detection and determination of siderophores, Anal. Biochem., 160, 47, 10.1016/0003-2697(87)90612-9

Schulz, 2006, What are endophytes?, 1

Senthil, 2011, Efficacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions, Phytopathol. Mediterr., 50, 55

Serra, 2005, Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A, Res. Microbiol., 156, 515, 10.1016/j.resmic.2004.12.005

Silby, 2011, Pseudomonas genomes: diverse and adaptable, FEMS Microbiol. Rev., 35, 652, 10.1111/j.1574-6976.2011.00269.x

Subramanian, 2015, Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110, Plant Growth Regul., 76, 327, 10.1007/s10725-014-9993-x

Tamura, 2011, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28, 2731, 10.1093/molbev/msr121

Thompson, 1997, The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 25, 4876, 10.1093/nar/25.24.4876

Úrbez-Torres, 2014, Grapevine trunk in British Columbia: incidence and characterization of the fungal pathogens associated with Esca and petri diseases of grapevine, Plant Dis., 98, 469, 10.1094/PDIS-05-13-0523-RE

Weisburg, 1991, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 173, 697, 10.1128/jb.173.2.697-703.1991

Wicaksono, 2017, Using bacterial endophytes from a New Zealand native medicinal plant for control of grapevine trunk diseases, Biol. Control, 114, 65, 10.1016/j.biocontrol.2017.08.003

Wu, 2016, Beneficial soil microbe promotes seed germination, plant growth and photosynthesis in herbal crop Codonopsis pilosula, Crop Pasture Sci., 67, 91, 10.1071/CP15110

Zhang, 2017, Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew, Crop Prot., 96, 173, 10.1016/j.cropro.2017.02.018