Pseudomonas chlororaphis as a multiproduct platform: Conversion of glycerol into high-value biopolymers and phenazines
Tóm tắt
Từ khóa
Tài liệu tham khảo
Laursen, 2004, Phenazine natural products: biosynthesis, synthetic analogues, and biological activity, Chem. Rev., 104, 1663, 10.1021/cr020473j
Tan, 2014, Start a research on biopolymer polyhydroxyalkanoate (PHA): a review, Polymers (Basel), 6, 706, 10.3390/polym6030706
Fett, 1996, Exopolysaccharides of the plant pathogens Pseudomonas corrugata and Ps. Flavescens and the saprophyte Ps. Chlororaphis, J. Appl. Bacteriol., 81, 181, 10.1111/j.1365-2672.1996.tb04497.x
Chen, 2015, Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium, Genomics Data, 4, 33, 10.1016/j.gdata.2015.01.006
Chincholkar, 2013
Gunther, 2005, Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium, Appl. Environ. Microbiol., 71, 2288, 10.1128/AEM.71.5.2288-2293.2005
Ashby, 1998, Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates, Appl. Microbiol. Biotechnol., 49, 431, 10.1007/s002530051194
Muhr, 2013, Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste, J. Biotechnol., 165, 45, 10.1016/j.jbiotec.2013.02.003
Li, 2010, Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp. M18G, Bioresour. Technol., 101, 3649, 10.1016/j.biortech.2009.12.120
Yao, 2018, Engineering and systems‑level analysis of Pseudomonas chlororaphis for production of phenazine‑1‑carboxamide using glycerol as the cost‑effective carbon source, Biotechnol. Biofuels, 11, 1, 10.1186/s13068-018-1123-y
Koller, 2013, Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass, Eng. Life Sci., 13, 549, 10.1002/elsc.201300021
Anjum, 2016, Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements, Int. J. Biol. Macromol., 89, 161, 10.1016/j.ijbiomac.2016.04.069
Rai, 2011, Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future, Mater. Sci. Eng. R, 72, 29, 10.1016/j.mser.2010.11.002
Solaiman, 2006, Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses, Biotechnol. Lett., 28, 157, 10.1007/s10529-005-5329-2
Yun, 2003, Characterization of a tacky poly(3-Hydroxyalkanoate) produced by Pseudomonas chlororaphis HS21 from Palm Kernel Oil, J. Microbiol. Biotchnol., 13, 64
Pereira, 2019, Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced byPseudomonas chlororaphis subsp. aurantiaca from glycerol, Int. J. Biol. Macromol., 122, 1144, 10.1016/j.ijbiomac.2018.09.064
Kumar, 2007, Bacterial exopolysaccharides – a perception, J. Basic Microbiol., 47, 103, 10.1002/jobm.200610203
Varbanets, 2015, Characterization of the lipipolysaccharides of Pseudomonas chlororaphis, Microbiology, 84, 781, 10.1134/S0026261715060132
Freitas, 2011, Advances in bacterial exopolysaccharides: from production to biotechnological applications, Trends Biotechnol., 29, 388, 10.1016/j.tibtech.2011.03.008
Cruz, 2016, Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates, N Biotechnol., 33, 206, 10.1016/j.nbt.2015.05.005
Freitas, 2010, Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol, Process Biochem., 45, 297, 10.1016/j.procbio.2009.09.020
Bauer, 2016, The systematic investigation of the quorum sensing system of the biocontrol strain Pseudomonas chlororaphis subsp. Aurantiaca PB-St2 unveils aurI to Be a biosynthetic origin for 3-Oxo-Homoserine lactones, PLoS One, 11, 1, 10.1371/journal.pone.0167002
Antunes, 2017, Production of FucoPol by Enterobacter A47 using waste tomato paste, Bioresour. Technol., 227, 66, 10.1016/j.biortech.2016.12.018
Galego, 2000, Characterization and application of poly(B-hydroxyalkanoates) family as composite biomaterials, Polym. Test, 19, 485, 10.1016/S0142-9418(99)00011-2
Schneemann, 2011, Genetic approach for the fast discovery of phenazine producing bacteria, Mar Drugs, 9, 772, 10.3390/md9050772
Sharma, 2017, Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis, Can. J. Microbiol., 63, 1009, 10.1139/cjm-2017-0412
Zdorovenko, 2016, Structure of the O-specific polysaccharides of Pseudomonas chlororaphis subsp. Chlororaphis UCM B-106, Carbohydr. Res., 433, 1, 10.1016/j.carres.2016.06.013
Pieretti, 2011, Structural characterization of the O-chain polysaccharide from an environmentally beneficial bacterium Pseudomonas chlororaphis subsp. Aureofaciens strain M71, Carbohydr. Res., 346, 2705, 10.1016/j.carres.2011.09.027
Reis, 2008, Galactose-rich polysaccharide
Guo, 2011, Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01, Appl. Microbiol. Biotechnol., 92, 791, 10.1007/s00253-011-3333-0
Pham, 2004, The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation, Microbiology, 150, 3405, 10.1099/mic.0.27357-0
Peña, 2011, Bioprocess design: fermentation strategies for improving the production of alginate and poly-β-hydroxyalkanoates (PHAs) by azotobacter vinelandii
Sánchez, 2003, Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046 from renewable sources, Eur. Polym. J., 39, 1385, 10.1016/S0014-3057(03)00019-3
Hazer, 2012, Poly(3-hydroxyalkanoate)s: diversification and biomedical applications. A state of the art review, Mater. Sci. Eng. C, 32, 637, 10.1016/j.msec.2012.01.021
Ward, 2005, Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3, Appl. Environ. Microbiol., 71, 2046, 10.1128/AEM.71.4.2046-2052.2005
Sathiyanarayanan, 2017, Production and characterization of medium-chain-length polyhydroxyalkanoates copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620, Int. J. Biol. Macromol., 97, 710, 10.1016/j.ijbiomac.2017.01.053
Freitas, 2009, Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol, Bioresour. Technol., 100, 859, 10.1016/j.biortech.2008.07.002
Dogan, 2015, Characterization of extracellular polysaccharides (EPS) produced by thermal Bacillus and determination of environmental conditions affecting exopolysaccharide production, Int. J. Environ. Res., 9, 1107