Pseudocapacitor Electrodes: Regular Pores Matter

Joule - Tập 3 - Trang 317-319 - 2019
Hong Jin Fan1
1School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore

Tài liệu tham khảo

Yao, 2018, Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading, Joule, 3, 417, 10.1016/j.joule.2018.10.018 Sun, 2017, Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage, Science, 356, 599, 10.1126/science.aam5852 Zhang, 2017, 3D printing technologies for electrochemical energy storage, Nano Energy, 40, 418, 10.1016/j.nanoen.2017.08.037 Tian, 2017, Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical Review, Adv. Energy Mater., 7, 1700127, 10.1002/aenm.201700127 Lubimtsev, 2013, Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals, J. Mater. Chem. A Mater. Energy Sustain., 1, 14951, 10.1039/c3ta13316h Wang, 2016, Atomic Layer Deposition of Amorphous TiO2 on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties, Adv. Mater. Interfaces, 3, 1600375, 10.1002/admi.201600375 Wang, 2017, Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors, Adv. Mater., 29, 1702093, 10.1002/adma.201702093 Zhao, 2018, Addressing Interfacial Issues in Liquid-Based and Solid-State Batteries by Atomic and Molecular Layer Deposition, Joule, 2, 2583, 10.1016/j.joule.2018.11.012 Li, 2016, Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage, Energy Environ. Sci., 9, 3135, 10.1039/C6EE00941G