Pseudocapacitor Electrodes: Regular Pores Matter
Tài liệu tham khảo
Yao, 2018, Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading, Joule, 3, 417, 10.1016/j.joule.2018.10.018
Sun, 2017, Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage, Science, 356, 599, 10.1126/science.aam5852
Zhang, 2017, 3D printing technologies for electrochemical energy storage, Nano Energy, 40, 418, 10.1016/j.nanoen.2017.08.037
Tian, 2017, Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical Review, Adv. Energy Mater., 7, 1700127, 10.1002/aenm.201700127
Lubimtsev, 2013, Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals, J. Mater. Chem. A Mater. Energy Sustain., 1, 14951, 10.1039/c3ta13316h
Wang, 2016, Atomic Layer Deposition of Amorphous TiO2 on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties, Adv. Mater. Interfaces, 3, 1600375, 10.1002/admi.201600375
Wang, 2017, Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors, Adv. Mater., 29, 1702093, 10.1002/adma.201702093
Zhao, 2018, Addressing Interfacial Issues in Liquid-Based and Solid-State Batteries by Atomic and Molecular Layer Deposition, Joule, 2, 2583, 10.1016/j.joule.2018.11.012
Li, 2016, Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage, Energy Environ. Sci., 9, 3135, 10.1039/C6EE00941G