Pseudocapacitance of Microporous Carbon/Polyaniline Composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Synthesis, Technology and Applications of Carbon Nanomaterials (Micro and Nano Technologies), Suraya, A.R., Raja, N.I.R.O. and Mohd, Z.H., Eds., Amsterdam: Elsevier, 2019, pp. 309–334. https://doi.org/10.1016/C2017-0-03040-9
Iro, Z.S., Subramani, C., and Dash, S.S., A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci., 2016, vol. 11, art. ID 10628.
Wang, G., Zhang, L., and Zhang, J., A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 2012, vol. 41, p. 797.
Park, J.H., Ko, J.M., and Park, O.O., Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors, J. Electrochem. Soc., 2003, vol. 150, no. 7, p. A864.
Zhang, Q.Z., Zhang, D., Miao, Z.C., Zhang, X.L., et al., Research progress in MnO2-carbon based supercapacitor electrode materials, Small, 2018, vol. 14, no. 24, art. ID 1702883.
Liu, P.B., Yan, J., Guang, Z.X., Huang, Y., et al., Recent advancements of polyaniline-based nano-composites for supercapacitors, J. Power Sources, 2019, vol. 424, p. 108.
Snook, G.A., Kao, P., and Best, A.S., Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 2011, vol. 196, no. 1, p. 1.
Ryu, K.S., Kim, K.M., Park, Y.J., Park, N.G., et al., Redox supercapacitor using polyaniline doped with Li salt as electrode, Solid State Ionics, 2002, vol. 152, p. 861.
Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., et al., Efficient storage mechanisms for building better supercapacitors, Natl. Energy, 2016, vol. 1, no. 6, p. 16070. https://doi.org/10.1038/nenergy.2016.70
Sharma, P. and Bhatti, T.S., A review on electrochemical double-layer capacitors, Energy Convers. Manage., 2010, vol. 51, no. 12, p. 2901.
Gonzalez, A., Goikolea, E., Barrena, J.A., and Mysyk, R., Review on supercapacitors: Technologies and materials, Renewable Sustainable Energy Rev., 2016, vol. 58, p. 1189.
Largeot, C., Portet, C., Chmiola, J., Taberna, P.L., et al., Relation between the ion size and pore size for an electric double-layer capacitor, J. Am. Chem. Soc., 2008, vol. 130, no. 9, p. 2730.
Jackel, N., Simon, P., Gogotsi, Y., and Presser, V., Increase in capacitance by subnanometer pores in carbon, ACS Energy Lett., 2016, vol. 1, no. 6, p. 1262.
Yan, J., Wei, T., Qiao, W., Fan, Z., et al., A high-performance carbon derived from polyaniline for supercapacitors, Electrochem. Commun., 2010, vol. 12, no. 10, p. 1279.
Yan, J., Wei, T., Shao, B., Fan, Z., et al., Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance, Carbon, 2010, vol. 48, no. 2, p. 487.
Yan, J., Wei, T., Fan, Z., Qian, W., et al., Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J. Power Sources, 2010, vol. 195, no. 9, p. 3041.
Jasinski, J.B., Ziolkowska, D.A., Sumanasekera, G.U., Jangam, J.S.D., et al., US Patent 10584033, 2020.
Ziolkowska, D.A., Jangam, J.S.D., Rudakov, G., Paronyan, T.M., et al., Simple synthesis of highly uniform bilayer-carbon nanocages, Carbon, 2017, vol. 115, p. 617.