Pseudo-analytical finite-difference elastic-wave extrapolation based on the k-space method

Geophysics - Tập 83 Số 1 - Trang T1-T14 - 2018
Xufei Gong1, Qizhen Du1, Qiang Zhao1, Chengfeng Guo2, Pengyuan Sun3, Jianlei Zhang3, Zhenping Tian3
1China University of Petroleum (East China), School of Geosciences, Qingdao, China..
2China Research Institute of Radio Wave Propagation, Qingdao, China
3BGP, China National Petroleum Corporation, Zhuozhou, China

Tóm tắt

Cost-effective elastic-wave modeling is the key to practical elastic reverse time migration and full-waveform inversion implementations. We have developed an efficient elastic pseudo-analytical finite-difference (PAFD) scheme for elastic-wave extrapolation. The elastic PAFD scheme is based on a modified pseudo-spectral method, k-space method, in which a pseudo-analytical operator is used to ensure the high accuracy of elastic-wave extrapolation. However, the k-space method is motivated for a pure wave mode, and thus its application in coupled first-order elastic-wave equations may cause the elastic pseudo-analytical operators to suffer from crosstalk between the P- and S-wavefields. The approaches presented attempt to overcome these shortcomings by introducing two improvements to achieve the goal. This is done, first, by performing a predictor-corrector strategy in first-order elastic-wave equations to eliminate those errors during wave extrapolation. Considering the massive computational cost in the spectral domain, we have developed an efficient elastic PAFD implementation, in which an innovative model-adaptive finite-difference coefficient-predicted scheme is provided to reduce the computational cost of elastic pseudo-analytical operator differencing. Dispersion analysis demonstrates the flexibility with varying velocity and superior performance of our PAFD scheme for spatial and temporal dispersion suppression than the existing Taylor-expansion-based scheme. Under the same simulation parameters, several numerical examples prove that the elastic PAFD scheme can provide more accurate simulation results, whereas the conventional scheme suffers from spatial or temporal dispersion errors, even in complex heterogeneous media.

Từ khóa


Tài liệu tham khảo

Aki K., 1980, Quantitative seismology: Theory and methods

10.1190/1.1441434

10.1006/jcph.1994.1159

10.1121/1.388038

10.1121/1.392051

10.1190/geo2015-0090.1

10.1190/1.2750424

10.1190/geo2011-0069.1

10.1190/1.1442040

10.1002/(ISSN)2326-0440

Du Q. Z., 2010, Oil Geophysical Prospecting, 45

10.1190/1.1889673

10.1190/1.3255375

10.1190/geo2013-0290.1

Fang, G., J. Hu, and S. Fomel, 2015, Weighted least square based lowrank finite difference for seismic wave extrapolation: 85th Annual International Meeting, SEG, Expanded Abstracts, 3554–3559.

10.1121/1.4730897

10.1111/j.1365-2478.2012.01064.x

10.1190/1.1442319

10.1098/rsta.1978.0064

Huang W., 2008, Acta Meteorologica Sinica, 67

10.1190/1.1443849

10.1190/1.1442763

10.1190/1.3485217

10.1190/geo2013-0073.1

10.1121/1.412079

10.1190/geo2012-0480.1

10.1093/gji/ggu032

10.1016/j.jcp.2009.08.027

Madariaga R., 1976, Bulletin of the Seismological Society of America, 66, 10.1785/BSSA0660030639

10.1109/58.911717

10.1111/j.1365-2478.1983.tb01060.x

10.1190/1.3449091

10.1121/1.402524

10.1016/0895-7177(94)90113-9

10.1190/1.3202306

10.1190/geo2010-0287.1

10.1093/gji/ggt017

Soubaras, R., and Y. Zhang, 2008, Two-step explicit marching method for reverse time migration: 78th Annual International Meeting, SEG, Expanded Abstracts, 2272–2276.

10.1190/geo2015-0183.1

10.1121/1.1421344

10.1111/j.1365-2478.1987.tb00830.x

10.1190/1.1441754

10.1190/1.3587217

Tikhonov A. N., 1963, Soviet Mathematical Doklady, 4

10.1190/1.1441605

10.1190/1.1442147

10.1190/geo2015-0059.1

10.1190/geo2014-0563.1

10.1190/geo2014-0078.1

10.1190/1.1893867

Yang D., 2002, Geophysical Journal International, 148

10.1071/EG13087

10.1071/EG13066

10.1190/geo2014-0065.1

10.1190/geo2011-0048.1