Prussian blue/TiO2 nanocomposites as a heterogeneous photo-Fenton catalyst for degradation of organic pollutants in water

Catalysis Science and Technology - Tập 5 Số 1 - Trang 504-514
Xuning Li1,2,3,4,5, Junhu Wang1,6,2,3, Alexandre I. Rykov1,6,2,3, Virender K. Sharma7,8,9, Huangzhao Wei1,6,2,3, Changzi Jin1,6,2,3, Xin Liu1,6,2,3, Mingrun Li1,6,2,3, Songhua Yu1,6,2,3, Chenglin Sun1,6,2,3, Dionysios D. Dionysiou10,11,12,13,14
1China
2Dalian 116023
3Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
4University of Chinese Academy of Sciences
5University of Chinese Academy of Sciences, Beijing, 100049, China
6Chinese Academy of sciences
7Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station,,USA
8School of Public Health
9Texas A&M University;
10705 Engineering Research Center
11Chemical and Environmental Engineering
12Department of Biomedical
13Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, USA
14University of Cincinnati

Tóm tắt

The photo-Fenton process of PB/TiO2 to degrade pollutants was investigated with Mössbauer and EPR for the first time.

Từ khóa


Tài liệu tham khảo

Ordonez, 2014, Sep. Purif. Rev., 43, 263, 10.1080/15422119.2012.758638

Schwarzenbach, 2010, Annu. Rev. Environ. Res., 35, 109, 10.1146/annurev-environ-100809-125342

Vörösmarty, 2010, Nature, 467, 555, 10.1038/nature09440

Hering, 2013, Environ. Sci. Technol., 47, 10721, 10.1021/es4007096

Pignatello, 2006, Crit. Rev. Environ. Sci. Technol., 36, 1, 10.1080/10643380500326564

O'Shea, 2012, J. Phys. Chem. Lett., 3, 2112, 10.1021/jz300929x

Enami, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, 623, 10.1073/pnas.1314885111

Pignatello, 1999, Environ. Sci. Technol., 33, 1832, 10.1021/es980969b

Klamerth, 2012, Environ. Sci. Technol., 46, 2885, 10.1021/es204112d

Su, 2012, J. Hazard. Mater., 211, 95, 10.1016/j.jhazmat.2011.10.006

Dhakshinamoorthy, 2012, ChemSusChem, 5, 46, 10.1002/cssc.201100517

Zhong, 2014, Appl. Catal., B, 150, 612, 10.1016/j.apcatb.2014.01.007

Bañuelos, 2013, Environ. Sci. Technol., 47, 7927, 10.1021/es401320e

Yamamoto, 2009, J. Am. Chem. Soc., 131, 13196, 10.1021/ja9041274

Liu, 2010, J. Hazard. Mater., 182, 665, 10.1016/j.jhazmat.2010.06.083

Liu, 2011, Environ. Chem. Lett., 9, 31, 10.1007/s10311-009-0242-x

Liu, 2010, J. Hazard. Mater., 182, 665, 10.1016/j.jhazmat.2010.06.083

Szacilowski, 2006, J. Mater. Chem., 16, 4603, 10.1039/B606402G

Wei, 2013, J. Hazard. Mater., 244, 478, 10.1016/j.jhazmat.2012.10.069

Shen, 2009, J. Colloid Interface Sci., 329, 188, 10.1016/j.jcis.2008.09.067

Gumy, 2006, Appl. Catal., B, 63, 76, 10.1016/j.apcatb.2005.09.013

Szacilowski, 2006, C. R. Chim., 9, 315, 10.1016/j.crci.2005.03.027

Zhou, 2013, Appl. Surf. Sci., 287, 359, 10.1016/j.apsusc.2013.09.156

Tada, 2001, J. Colloid Interface Sci., 239, 196, 10.1006/jcis.2001.7575

Samain, 2013, J. Phys. Chem. C, 117, 9693, 10.1021/jp3111327

Gorski, 2010, Am. Mineral., 95, 1017, 10.2138/am.2010.3435

P. Gütlich , R.Link and A.Trautwein, Mössbauer spectroscopy and transition metal chemistry, Springer, Berlin, 2011, pp. 89–102

Samain, 2013, J. Anal. At. Spectrom., 28, 524, 10.1039/c3ja30359d

Ma, 2003, Angew. Chem., Int. Ed., 42, 1029, 10.1002/anie.200390264

Chen, 2002, J. Phys. Chem. B, 106, 318, 10.1021/jp0119025

Chang, 2008, Ind. Eng. Chem. Res., 47, 8533, 10.1021/ie8003013

Labiadh, 2014, Appl. Catal., B, 144, 29, 10.1016/j.apcatb.2013.07.004

Poblete, 2011, Appl. Catal., B, 102, 172, 10.1016/j.apcatb.2010.11.039

Xue, 2009, J. Hazard. Mater., 166, 407, 10.1016/j.jhazmat.2008.11.089

Karatas, 2012, J. Ind. Eng. Chem., 18, 1058, 10.1016/j.jiec.2011.12.007

Su, 2013, J. Hazard. Mater., 244, 736, 10.1016/j.jhazmat.2012.11.005

Li, 2010, Chem. Eng. J., 158, 148, 10.1016/j.cej.2009.12.021