Provisional methods to guide species‐specific seed transfer in ecological restoration

Ecosphere - Tập 9 Số 1 - 2018
Taylor M. Crow1, Shannon E. Albeke2, C. Alex Buerkle3, Kristina M. Hufford1
1Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, USA
2Wyoming Geographic Information Science Center, University of Wyoming, Laramie, Wyoming 82071, USA
3Department of Botany, University of Wyoming, Laramie, Wyoming 82071, USA

Tóm tắt

Abstract

Transferring plant material during ecological restoration has inherent risk. The use of seed transfer guidelines minimizes the possibility of introducing maladapted genotypes. We delineated biogeographic regions relevant to the distribution of Cercocarpus montanus for the purpose of creating provisional seed transfer zones for ecological restoration. We also modeled seed transfer guidelines using quantitative estimates of environmental tolerance and thresholds. Analyses identified broadscale environmental patterns relevant for seed transfer success. First, a species distribution model was used to identify the distribution of C. montanus. Next, we used non‐metric multidimensional scaling to investigate the structure of environmental data, and hierarchical cluster analysis to delineate biogeographic regions (i.e., environmental discontinuities) using species distribution data. Finally, we calculated measures of environmental tolerance and thresholds for C. montanus to model the probability of seed transfer success with multiple logistic regression. Biogeographic regionalization of C. montanus resulted in four major clusters, which agreed with ordination methods. Logistic regression was implemented using estimates of environmental tolerance and threshold data to model seed transfer success. We compared our species‐specific seed transfer zones and guidelines with other provisional seed transfer zone methods and found that our species‐specific methods performed better at explaining phenotypic variation of C. montanus in four out of six cases. Seed transfer zones are useful for restoration planning; however, zonal models fail to reflect much of the environmental heterogeneity present across the range of C. montanus. Continuous models for seed transfer success using environmental tolerance and thresholds enhance the development and use of seed transfer guidelines because they reflect landscape heterogeneity at a fine scale, and the results are relative to restoration sites of interest. Herein, we describe a methodology to construct provisional seed transfer zones and continuous seed transfer guidelines using species‐specific distribution models and multivariate analyses.

Từ khóa


Tài liệu tham khảo

10.1371/journal.pone.0063708

10.1111/j.1365-294X.2005.02655.x

Bates D. M.Maechler B.Bolker andS.Walker.2014.lme4: linear mixed‐effects models using eigen and s4. R package version 1:1–23.

Becker R. A., 1988, The new S language: a programming environment for data analysis and graphics

10.1890/13-0285.1

10.1023/A:1010933404324

10.1080/01904169209364301

10.1111/j.1442-9993.2006.01576.x

10.1007/BF00273770

10.1371/journal.pbio.1000357

Crow T. M.2016.Adaptive variation of Cercocarpus montanus. Dissertation.University of Wyoming Laramie Wyoming USA.

10.1890/07-0539.1

10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2

10.1002/eap.1505

10.1111/j.1472-4642.2007.00340.x

10.1126/science.179.4070.243

10.1016/S1405-888X(13)72073-4

10.1111/j.1461-0248.2006.00928.x

Evans J. S. andM. A.Murphy.2014.rfutilities. R package version 1.0‐0.http://CRAN.R-project.org/package=rfUtilities

10.1017/S0376892997000088

10.1111/j.0014-3820.2000.tb00552.x

10.1016/j.biocon.2004.11.002

10.1126/science.1157966

10.1111/j.1365-2745.2009.01509.x

10.2307/3897171

10.1007/s11295-010-0341-7

10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2

10.1111/jbi.12505

10.1086/597611

10.1111/j.0906-7590.2006.04700.x

10.1146/annurev-ento-120709-144746

10.1016/S0169-5347(03)00002-8

10.1139/B10-047

10.2979/NPJ.2004.5.2.131

10.1111/j.1600-0587.2011.06994.x

10.1111/j.1461-0248.2004.00684.x

10.1046/j.1365-2664.2000.00517.x

10.1093/protein/9.11.1063

10.1111/j.0014-3820.2006.tb01893.x

10.1016/j.jnc.2006.05.002

10.1111/j.0021-8901.2004.00961.x

10.1111/j.1365-2699.2010.02375.x

10.1016/B978-0-444-53868-0.50018-6

10.1371/journal.pone.0004010

10.1890/12-0780.1

Liaw A., 2002, Classification and regression by randomForest, R News, 2, 18

10.3732/ajb.92.10.1691

Ludwig J. A., 1988, Statistical ecology: a primer in methods and computing

10.1007/s10750-015-2412-0

10.1016/S1364-8152(98)00095-4

10.2307/2845617

McLeod A. andC.Xu.2014.bestglm: best subset glm. R package version 0.34.http://CRAN.R-project.org/package=bestglm

10.1111/j.1526-100X.2010.00702.x

10.1111/j.1420-9101.2009.01910.x

Monserud R., 1990, An expert system for determining compatible seed‐transfer locations, AI Applications in Natural Resource Management, 4, 44

10.1890/08-0879.1

Oksanen J. F. G.Blanchet R.Kindt P.Legendre P. R.Minchin R. B.O'Hara G. L.Simpson P.Solymos M. H. H.Stevens andH.Wagner.2015.vegan: community ecology package. R package version 2.3‐0.http://CRAN.R-project.org/package=vegan

10.1111/j.1467-8306.1987.tb00149.x

10.1111/jbi.12490

10.1139/x92-035

10.1046/j.1526-100X.1998.00636.x

Pearson R. G., 2010, Species distribution modeling for conservation educators and practitioners, Lessons in Conservation, 3, 54

10.1126/science.285.5431.1265

10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2

10.1111/j.0906-7590.2008.5203.x

R Core Team, 2015, R: a language and environment for statistical computing

10.1086/337812

10.1016/0378-1127(95)03602-4

10.1111/j.1365-2699.2009.02151.x

10.1515/sg-2008-0025

Sneath P. H., 1973, Numerical taxonomy. The principles and practices of numerical classification

10.2307/1217208

10.1111/eva.12077

10.1111/mec.13462

10.1111/j.1601-5223.1922.tb02727.x

10.1139/x11-060

10.1016/j.baae.2009.09.002

10.1111/j.1365-294X.2011.05416.x

White D. andR. B.Gramacy.2012.maptree: mapping pruning and graphing tree models. R package version 1.4‐7.http://CRAN.R-project.org/package=maptree

10.2979/NPJ.2008.9.3.287

10.1016/j.foreco.2006.02.028