Prototype selection for interpretable classification
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. <i>Proc. Natl. Acad. Sci. USA</i> <b>99</b> 6567–6572.
Cannon, A. H. and Cowen, L. J. (2004). Approximation algorithms for the class cover problem. <i>Ann. Math. Artif. Intell.</i> <b>40</b> 215–223.
Cano, J. R., Herrera, F. and Lozano, M. (2003). Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study. <i>IEEE Transactions on Evolutionary Computation</i> <b>7</b> 561–575.
Cano, J. R., Herrera, F. and Lozano, M. (2007). Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. <i>Data and Knowledge Engineering</i> <b>60</b> 90–108.
Ceyhan, E., Priebe, C. E. and Marchette, D. J. (2007). A new family of random graphs for testing spatial segregation. <i>Canad. J. Statist.</i> <b>35</b> 27–50.
Cover, T. M. and Hart, P. (1967). Nearest neighbor pattern classification. <i>Proc. IEEE Trans. Inform. Theory</i> <b>IT-11</b> 21–27.
DeVinney, J. and Wierman, J. C. (2002). A SLLN for a one-dimensional class cover problem. <i>Statist. Probab. Lett.</i> <b>59</b> 425–435.
Fayed, H. A. and Atiya, A. F. (2009). A novel template reduction approach for the <i>K</i>-nearest neighbor method. <i>IEEE Transactions on Neural Networks</i> <b>20</b> 890–896.
Feige, U. (1998). A threshold of ln<i>n</i> for approximating set cover. <i>J. ACM</i> <b>45</b> 634–652.
Friedman, J. H., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. <i>Journal of Statistical Software</i> <b>33</b> 1–22.
Hart, P. (1968). The condensed nearest-neighbor rule. <i>IEEE Trans. Inform. Theory</i> <b>14</b> 515–516.
Hastie, T. and Simard, P. Y. (1998). Models and metrics for handwritten digit recognition. <i>Statist. Sci.</i> <b>13</b> 54–65.
Kohonen, T. (2001). <i>Self-Organizing Maps</i>, 3rd ed. <i>Springer Series in Information Sciences</i> <b>30</b>. Springer, Berlin.
Könemann, J., Parekh, O. and Segev, D. (2006). A unified approach to approximating partial covering problems. In <i>Algorithms—ESA 2006. Lecture Notes in Computer Science</i> <b>4168</b> 468–479. Springer, Berlin.
Leslie, C. S., Eskin, E., Cohen, A., Weston, J. and Noble, W. S. (2004). Mismatch string kernels for discriminative protein classification. <i>Bioinformatics</i> <b>20</b> 467–476.
Lozano, M., Sotoca, J. M., Sánchez, J. S., Pla, F., Pkalska, E. and Duin, R. P. W. (2006). Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces. <i>Pattern Recognition</i> <b>39</b> 1827–1838.
Marchand, M. and Shawe-Taylor, J. (2002). The set covering machine. <i>J. Mach. Learn. Res.</i> <b>3</b> 723–746.
Marchiori, E. (2010). Class conditional nearest neighbor for large margin instance selection. <i>IEEE Trans. Pattern Anal. Mach. Intell.</i> <b>32</b> 364–370.
Park, M. Y. and Hastie, T. (2007). <i>L</i><sub>1</sub>-regularization path algorithm for generalized linear models. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>69</b> 659–677.
Priebe, C. E., DeVinney, J. G., Marchette, D. J. and Socolinsky, D. A. (2003). Classification using class cover catch digraphs. <i>J. Classification</i> <b>20</b> 3–23.
Takigawa, I., Kudo, M. and Nakamura, A. (2009). Convex sets as prototypes for classifying patterns. <i>Eng. Appl. Artif. Intell.</i> <b>22</b> 101–108.
Wilson, D. R. and Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. <i>Machine Learning</i> <b>38</b> 257–286.
Asuncion, A. and Newman, D. J. (2007). UCI Machine Learning Repository. Univ. California, Irvine, School of Information and Computer Sciences.
Devijver, P. A. and Kittler, J. (1982). <i>Pattern Recognition: A Statistical Approach</i>. Prentice Hall, Englewood Cliffs, NJ.
Hastie, T., Tibshirani, R. and Friedman, J. (2009). <i>The Elements of Statistical Learning</i>: <i>Data Mining, Inference, and Prediction</i>, 2nd ed. Springer, New York.
Hussain, Z., Szedmak, S. and Shawe-Taylor, J. (2004). The linear programming set covering machine. <i>Pattern Analysis, Statistical Modelling and Computational Learning</i>.
Ripley, B. D. (2005). <i>Pattern Recognition and Neural Networks</i>. Cambridge Univ. Press, New York.
Simard, P. Y., Le Cun, Y. A. and Denker, J. S. (1993). Efficient pattern recognition using a new transformation distance. In <i>Advances in Neural Information Processing Systems</i> 50–58. Morgan Kaufmann, San Mateo, CA.
Tipping, M. E. and Schölkopf, B. (2001). A kernel approach for vector quantization with guaranteed distortion bounds. In <i>Artificial Intelligence and Statistics</i> (T. Jaakkola and T. Richardson, eds.) 129–134. Morgan Kaufmann, San Francisco.
Vazirani, V. V. (2001). <i>Approximation Algorithms</i>. Springer, Berlin.
Zhu, J., Rosset, S., Hastie, T. and Tibshirani, R. (2004). 1-norm support vector machines. In <i>Advances in Neural Information Processing Systems 16</i> (S. Thrun, L. Saul and B. Schölkopf, eds.). MIT Press, Cambridge, MA.