Proton-detected polarization optimized experiments (POE) using ultrafast magic angle spinning solid-state NMR: Multi-acquisition of membrane protein spectra
Tài liệu tham khảo
Hu, 2010, Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR, Science, 330, 505, 10.1126/science.1191714
Quinn, 2018, Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5alpha identified by magic-angle spinning NMR and molecular dynamics simulations, Proc. Natl. Acad. Sci. USA, 115, 11519, 10.1073/pnas.1800796115
Zhou, 2013, Influences of membrane mimetic environments on membrane protein structures, Annu. Rev. Biophys., 42, 361, 10.1146/annurev-biophys-083012-130326
Baldus, 2018, GPCR: Lock and key become flexible, Nat. Chem. Biol., 14, 201, 10.1038/nchembio.2567
Fitzpatrick, 2013, Atomic structure and hierarchical assembly of a cross-beta amyloid fibril, Proc. Natl. Acad. Sci. USA, 110, 5468, 10.1073/pnas.1219476110
Watt, 2014, Recent advances in solid-state nuclear magnetic resonance techniques to quantify biomolecular dynamics, Anal. Chem., 86, 58, 10.1021/ac403956k
Qiang, 2017, Structural variation in amyloid-beta fibrils from Alzheimer's disease clinical subtypes, Nature, 541, 217, 10.1038/nature20814
Park, 2012, Structure of the chemokine receptor CXCR1 in phospholipid bilayers, Nature, 491, 779, 10.1038/nature11580
Gopinath, 2017, Probing the conformationally excited states of membrane proteins via 1H-detected MAS solid-state NMR spectroscopy, J. Phys. Chem. B, 121, 4456, 10.1021/acs.jpcb.7b03268
Gustavsson, 2013, Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban, Proc. Natl. Acad. Sci. USA, 110, 17338, 10.1073/pnas.1303006110
Ha, 2012, Tuning the structural coupling between the transmembrane and cytoplasmic domains of phospholamban to control sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) function, J. Muscle Res. Cell. Motil., 33, 485, 10.1007/s10974-012-9319-4
Fusco, 2014, Direct observation of the three regions in alpha-synuclein that determine its membrane-bound behaviour, Nat. Commun., 5, 3827, 10.1038/ncomms4827
Castellani, 2002, Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy, Nature, 420, 98, 10.1038/nature01070
Wang, 2016, Structure and dynamics of extracellular loops in human aquaporin-1 from solid-state NMR and molecular dynamics, J. Phys. Chem. B, 120, 9887, 10.1021/acs.jpcb.6b06731
Wasmer, 2008, Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core, Science, 319, 1523, 10.1126/science.1151839
Zhang, 2010, Resonance assignment and three-dimensional structure determination of a human alpha-defensin, HNP-1, by solid-state NMR, J. Mol. Biol., 397, 408, 10.1016/j.jmb.2010.01.030
Franks, 2007, Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins, J Biomol. NMR, 39, 107, 10.1007/s10858-007-9179-1
J. Cavanagh, W. J. Fairbrother, A. G. Palmer, M. Rance, N. J. Skelton, Protein NMR Spectroscopy: Principles and Practice, second edi. Protein Nmr Spectroscopy: Principles and Practice, 2007, 1–888.
Paulson, 2003, Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state, J. Am. Chem. Soc., 125, 15831, 10.1021/ja037315+
Chevelkov, 2015, Perspectives for sensitivity enhancement in proton-detected solid-state NMR of highly deuterated proteins by preserving water magnetization, J. Biomol. NMR, 61, 151, 10.1007/s10858-015-9902-2
Zhou, 2007, Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning, J. Am. Chem. Soc., 129, 11791, 10.1021/ja073462m
Zhou, 2007, Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy, Angew. Chem. Int. Ed. Engl., 46, 8380, 10.1002/anie.200702905
Loquet, 2018, 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy, Methods, 138–139, 26, 10.1016/j.ymeth.2018.03.014
Fricke, 2017, Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning, Nat. Protoc., 12, 764, 10.1038/nprot.2016.190
Zhang, 2017, Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy, ACC Chem. Res., 50, 1105, 10.1021/acs.accounts.7b00082
Wang, 2015, Nano-mole scale side-chain signal assignment by 1H-detected protein solid-state NMR by ultra-fast magic-angle spinning and stereo-array isotope labeling, PLoS ONE, 10, e0122714, 10.1371/journal.pone.0122714
Chipot, 2018, Perturbations of native membrane protein structure in alkyl phosphocholine detergents: a critical assessment of NMR and biophysical studies, Chem. Rev., 118, 3559, 10.1021/acs.chemrev.7b00570
Gopinath, 2017, (1)H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins, J. Magn. Reson., 285, 101, 10.1016/j.jmr.2017.09.003
Gopinath, 2012, Dual acquisition magic-angle spinning solid-state NMR-spectroscopy: simultaneous acquisition of multidimensional spectra of biomacromolecules, Angew. Chem. Int. Ed. Engl., 51, 2731, 10.1002/anie.201108132
Gopinath, 2012, 3D DUMAS: simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins, J. Magn. Reson., 220, 79, 10.1016/j.jmr.2012.04.006
Gopinath, 2013, Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra, J. Chem. Phys., 138, 184201, 10.1063/1.4803126
Gopinath, 2016, Orphan spin polarization: a catalyst for high-throughput solid-state NMR spectroscopy of proteins, Annu. Rep. NMR Spectrosc., 89, 103, 10.1016/bs.arnmr.2016.04.003
Gopinath, 2016, Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?, J. Magn. Reson., 267, 1, 10.1016/j.jmr.2016.03.001
Gopinath, 2018, Experimental aspects of polarization optimized experiments (POE) for magic angle spinning solid-state NMR of microcrystalline and membrane-bound proteins, Methods Mol.Biol., 1688, 37, 10.1007/978-1-4939-7386-6_2
Mote, 2013, Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy, J. Biomol. NMR, 57, 91, 10.1007/s10858-013-9766-2
Nelson, 2018, Effects of the Arg9Cys and Arg25Cys mutations on phospholamban's conformational equilibrium in membrane bilayers, Biochim. Biophys. Acta, 1860, 1335, 10.1016/j.bbamem.2018.02.030
Kupce, 2017, NOAH: NMR supersequences for small molecule analysis and structure elucidation, Angew. Chem. Int. Ed. Engl., 56, 11779, 10.1002/anie.201705506
Gopinath, 2015, Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations, J. Magn. Reson., 253, 143, 10.1016/j.jmr.2015.01.001
Nielsen, 2012, Simultaneous acquisition of PAR and PAIN spectra, J. Biomol. NMR, 52, 283, 10.1007/s10858-012-9616-7
Stringer, 2005, Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes, J. Magn. Reson., 173, 40, 10.1016/j.jmr.2004.11.015
Gor'kov, 2007, Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz, J. Magn. Reson., 185, 77, 10.1016/j.jmr.2006.11.008
Das, 2016, Simultaneous cross polarization to (13)C and (15)N with (1)H detection at 60kHz MAS solid-state NMR, J. Magn. Reson., 262, 20, 10.1016/j.jmr.2015.12.004
Bellstedt, 2012, Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra, J. Biomol. NMR, 54, 325, 10.1007/s10858-012-9680-z
Sharma, 2016, A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins, J. Biomol. NMR, 65, 127, 10.1007/s10858-016-0043-z
Zhang, 2016, Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy, J. Magn. Reson., 266, 59, 10.1016/j.jmr.2016.03.006
Gopinath, 2018, Probing membrane protein ground and conformationally excited states using dipolar- and J-coupling mediated MAS solid state NMR experiments, Methods, 148, 115, 10.1016/j.ymeth.2018.07.003
Gopinath, 2019, Hybridization of TEDOR and NCX MAS solid-state NMR experiments for simultaneous acquisition of heteronuclear correlation spectra and distance measurements, J. Biomol. NMR, 73, 141, 10.1007/s10858-019-00237-5
Fung, 2000, An improved broadband decoupling sequence for liquid crystals and solids, J. Magn. Reson., 142, 97, 10.1006/jmre.1999.1896
Shaka, 1983, An improved sequence for broadband decoupling: WALTZ-16, J. Magn. Reson., 52, 335
Hartmann, 1962, Nuclear double resonance in the rotating frame, Phys. Rev., 128, 2042, 10.1103/PhysRev.128.2042
Zhou, 2008, High-performance solvent suppression for proton detected solid-state NMR, J. Magn. Reson., 192, 167, 10.1016/j.jmr.2008.01.012
Baldus, 1998, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys., 95, 1197, 10.1080/00268979809483251
Bennett, 1995, Heteronuclear decoupling in rotating solids, J. Chem. Phys., 103, 6951, 10.1063/1.470372
Delaglio, 1995, NMRPipe: A multidimensional spectral processing system based on UNIX pipes, J. Biomol. NMR, 6, 277, 10.1007/BF00197809
Xue, 2017, Limits of resolution and sensitivity of proton detected MAS solid-state NMR experiments at 111 kHz in deuterated and protonated Proteins, Sci. Rep., 7, 7444, 10.1038/s41598-017-07253-1
Wang, 2015, Nano-mole scale sequential signal assignment by (1)H-detected protein solid-state NMR, Chem. Commun. (Camb), 51, 15055, 10.1039/C5CC04618A
Lalli, 2017, Proton-based structural analysis of a heptahelical transmembrane protein in lipid bilayers, J. Am. Chem. Soc., 139, 13006, 10.1021/jacs.7b05269
Zhang, 2015, A novel high-resolution and sensitivity-enhanced three-dimensional solid-state NMR experiment under ultrafast magic angle spinning conditions, Sci. Rep., 5, 11810, 10.1038/srep11810
Wittmann, 2016, Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS, J. Biomol. NMR, 66, 233, 10.1007/s10858-016-0071-8
Zhang, 2017, 3D double-quantum/double-quantum exchange spectroscopy of protons under 100 kHz magic angle spinning, J. Phys. Chem. B, 121, 5944, 10.1021/acs.jpcb.7b03480
Saalwachter, 2011, BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies, J. Magn. Reson., 212, 204, 10.1016/j.jmr.2011.07.001
Demers, 2015, Recovery of bulk proton magnetization and sensitivity enhancement in ultrafast magic-angle spinning solid-state NMR, J. Phys. Chem. B, 119, 2908, 10.1021/jp511987y
Pines, 1973, Proton-enhanced NMR of dilute spins in solids, J. Chem. Phys, 59, 569, 10.1063/1.1680061
Andreas, 2016, Structure of fully protonated proteins by proton-detected magic-angle spinning NMR, Proc. Natl. Acad. Sci. USA, 113, 9187, 10.1073/pnas.1602248113
Maly, 2008, Dynamic nuclear polarization at high magnetic fields, J. Chem. Phys., 128, 052211, 10.1063/1.2833582
Wickramasinghe, 2009, Nanomole-scale protein solid-state NMR by breaking intrinsic 1HT1 boundaries, Nat. Methods, 6, 215, 10.1038/nmeth.1300
Suiter, 2014, Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range, J. Biomol. NMR, 59, 57, 10.1007/s10858-014-9824-4
Lecoq, 2019, 100 kHz MAS proton-detected NMR spectroscopy of hepatitis B virus capsids, Front. Mol. Biosci., 6, 58, 10.3389/fmolb.2019.00058
Penzel, 2019, Spinning faster: protein NMR at MAS frequencies up to 126 kHz, J. Biomol. NMR, 73, 19, 10.1007/s10858-018-0219-9
Agarwal, 2014, De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy, Angew. Chem. Int. Ed. Engl., 53, 12253, 10.1002/anie.201405730
Banigan, 2012, Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra, J. Phys. Chem. B, 116, 7138, 10.1021/jp303269m
Gallo, 2019, A suite of solid-state NMR experiments to utilize orphaned magnetization for assignment of proteins using parallel high and low gamma detection, J. Magn. Reson., 305, 219, 10.1016/j.jmr.2019.07.006
Viegas, 2016, UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection, J. Biomol. NMR, 64, 9, 10.1007/s10858-015-0008-7