Proton-conducting oxides for energy conversion and storage

Applied Physics Reviews - Tập 7 Số 1 - 2020
Chuancheng Duan1, Jake Huang2, Neal P. Sullivan3, Ryan O’Hayre2
1Department of Chemical Engineering, Kansas State University 1 , Manhattan, Kansas 66506, USA
2Department of Metallurgical and Materials Engineering, Colorado School of Mines 2 , Golden, Colorado 80401, USA
3Department of Mechanical Engineering, Colorado School of Mines 3 , Golden, Colorado 80401, USA

Tóm tắt

Proton-conducting oxides are a class of solid-state ion-conducting ceramic materials that demonstrate significant hydrogen ion (proton) conductivity at intermediate temperatures (e.g., 300–700 °C). They are garnering significant attention due to several unique characteristics that distinguish them from both higher temperature oxygen ion conducting oxides and lower temperature proton-conducting polymers. By enabling proton-mediated electrochemistry under both dry and wet environments at moderate temperatures, protonic ceramics provide unique opportunities to enhance or synergize a diverse range of complementary electrochemical and thermochemical processes. Because of this potential, significant efforts have been devoted to advancing numerous energy-related applications using these materials. This review aims to comprehensively summarize these applications and analyze the most up-to-date and future developments of proton-conducting oxides. We aim to bring together this diverse subject matter by integrating the fundamentals of proton-conducting oxides with application-oriented insights. We begin with a historical roadmap, followed by a basic overview of the materials, theories and fundamentals, and fabrication and processing technologies underlying the field. The central section of our review summarizes major applications and developments of proton-conducting ceramics, ranging from maturing applications approaching commercialization to embryonic technologies just now emerging from the lab. These include protonic ceramic fuel cells, protonic ceramic electrolysis cells, reversible protonic ceramic electrochemical cells, protonic ceramic membrane reactors, and protonic ceramic electrochemical reactors. For each application, we analyze both the prospects and challenges and offer recommendations for future research directions so that tomorrow's researchers can continue to advance the development and commercialization of these fascinating materials.

Từ khóa


Tài liệu tham khảo

2016, Int. J. Hydrogen Energy, 41, 20993, 10.1016/j.ijhydene.2016.05.208

2003, J. Power Sources, 114, 32, 10.1016/S0378-7753(02)00542-6

2019, Adv. Energy Mater., 9, 1801284, 10.1002/aenm.201801284

2020, Mater. Today, 32, 178, 10.1016/j.mattod.2019.06.005

2016, Energy, 116, 1131, 10.1016/j.energy.2016.10.033

2017, Renewable Energy, 113, 620, 10.1016/j.renene.2017.06.027

2018, Engineering, 4, 352, 10.1016/j.eng.2018.05.007

2017, ECS Trans., 78, 125, 10.1149/07801.0125ecst

2015, Demonstration of SOFC-micro gas turbine (MGT) hybrid systems for commercialization, Mitsubishi Heavy Ind. - Tech. Rev., 52, 47

2015, ECS Trans., 68, 15, 10.1149/06801.0015ecst

2016, Intermediate-Temperature Solid Oxide Fuel Cells, 247, 10.1007/978-3-662-52936-2_8

2011, ECS Transactions, 121

2015, MRS Bull., 40, 1067, 10.1557/mrs.2015.259

2015, Chem. Soc. Rev., 44, 5926, 10.1039/C4CS00442F

2018, Adv. Mater., 30, 1800561, 10.1002/adma.201800561

2016, Interface Mag., 25, 65, 10.1149/2.F04163if

2015, Science, 349, 1529, 10.1126/science.aab3033

2016, Nat. Energy, 1, 16102, 10.1038/nenergy.2016.102

2015, Nature, 527, 78, 10.1038/nature15746

2017, Nat. Rev. Mater., 2, 16080, 10.1038/natrevmats.2016.80

2016, Nat. Commun., 7, 11741, 10.1038/ncomms11741

2019, J. Energy Storage, 23, 392, 10.1016/j.est.2019.03.001

2016, Hydrogen Energy Engineering: A Japanese Perspective, 137, 10.1007/978-4-431-56042-5_9

2018, Nat. Catal., 1, 814, 10.1038/s41929-018-0179-1

2017, Chem. Soc. Rev., 46, 1427, 10.1039/C6CS00403B

2015, Nat. Mater., 14, 239, 10.1038/nmat4165

2013, J. Power Sources, 223, 129, 10.1016/j.jpowsour.2012.09.061

2014, Curr. Appl. Phys., 14, 672, 10.1016/j.cap.2014.02.013

2019, Energy Environ. Sci., 12, 206, 10.1039/C8EE02865F

2015, Energy Environ. Sci., 8, 2471, 10.1039/C5EE01485A

2013, Int. J. Hydrogen Energy, 38, 4281, 10.1016/j.ijhydene.2013.01.192

2011, Energy Environ. Sci., 4, 944, 10.1039/C0EE00457J

2019, Nat. Energy, 4, 230, 10.1038/s41560-019-0333-2

2019, Energy Environ. Sci., 12, 1592, 10.1039/C9EE00219G

2015, Chem. Eng. J., 260, 427, 10.1016/j.cej.2014.09.029

2016, Science, 353, 563, 10.1126/science.aag0274

2015, Science, 349, 1321, 10.1126/science.aab3987

2018, Nature, 557, 217, 10.1038/s41586-018-0082-6

2017, Nat. Energy, 2, 923, 10.1038/s41560-017-0029-4

2017

2009, Science, 326, 126, 10.1126/science.1174811

2019, Nat. Mater., 18, 752, 10.1038/s41563-019-0388-2

2018, Nat. Energy, 3, 202, 10.1038/s41560-017-0085-9

2018, Nat. Energy, 3, 870, 10.1038/s41560-018-0230-0

1964, Electrolyte solide á base de AlLaO3. Application aux piles á combustible, C. R. Acad. Sci., 2813

1966, Ber. Bunsengesellschaft Phys. Chem., 70, 781, 10.1002/bbpc.19660700804

1982, J. Power Sources, 7, 293, 10.1016/0378-7753(82)80018-9

1982, J. Appl. Electrochem., 12, 645, 10.1007/BF00617484

1981, Solid State Ionics, 3-4, 359, 10.1016/0167-2738(81)90113-2

1987, Int. J. Hydrogen Energy, 12, 73, 10.1016/0360-3199(87)90082-6

1999, Solid State Ionics, 125, 271, 10.1016/S0167-2738(99)00185-X

1996, Solid State Ionics, 86-88, 9, 10.1016/0167-2738(96)00087-2

1983, Solid State Ionics, 9-10, 1021, 10.1016/0167-2738(83)90125-X

1986, J. Appl. Electrochem., 16, 663, 10.1007/BF01006916

1993, J. Electrochem. Soc., 140, 459, 10.1149/1.2221068

2003, Annu. Rev. Mater. Res., 33, 333, 10.1146/annurev.matsci.33.022802.091825

2007, J. Mater. Res., 22, 1322, 10.1557/jmr.2007.0163

2009, Chem. Mater., 21, 2755, 10.1021/cm900208w

2010, Solid State Ionics, 181, 496, 10.1016/j.ssi.2010.02.008

2013, Solid State Ionics, 253, 201, 10.1016/j.ssi.2013.09.025

2010, J. Mater. Chem., 20, 6333, 10.1039/c0jm00381f

2015, J. Electrochem. Soc., 162, F803, 10.1149/2.0021508jes

2018, Catal. Lett., 148, 3592, 10.1007/s10562-018-2553-7

1993, J. Electrochem. Soc., 140, 1687, 10.1149/1.2221624

1982, J. Appl. Electrochem., 12, 645, 10.1007/BF00617484

1982, J. Power Sources, 7, 293, 10.1016/0378-7753(82)80018-9

1987, Int. J. Hydrogen Energy, 12, 73, 10.1016/0360-3199(87)90082-6

1995, Solid State Ionics, 79, 333, 10.1016/0167-2738(95)00083-I

2005, J. Am. Ceram. Soc., 88, 2362, 10.1111/j.1551-2916.2005.00449.x

2018, Energy Environ. Sci., 11, 1710, 10.1039/C8EE00645H

2019, Joule, 3, 2842, 10.1016/j.joule.2019.07.004

2001, Solid State Ionics, 145, 333, 10.1016/S0167-2738(01)00928-6

2014, J. Mater. Chem. A, 2, 16915, 10.1039/C4TA03213F

2016, J. Struct. Chem., 57, 910, 10.1134/S0022476616050097

1997, Solid State Ionics, 98, 1, 10.1016/S0167-2738(97)00102-1

2012, J. Power Sources, 201, 49, 10.1016/j.jpowsour.2011.10.104

2008, Chem. Mater., 20, 3480, 10.1021/cm7025448

2006, Nat. Mater., 5, 193, 10.1038/nmat1591

2012, J. Phys. Chem. C, 116, 19117, 10.1021/jp304904j

2013, Acta Mater., 61, 6933, 10.1016/j.actamat.2013.08.005

2007, J. Membr. Sci., 299, 156, 10.1016/j.memsci.2007.04.037

Proton-Conducting Ceramics: From Fundamentals to Applied Research

2012, Adv. Mater., 24, 195, 10.1002/adma.201103102

1988, J. Electrochem. Soc., 135, 529, 10.1149/1.2095649

1999, J. Electrochem. Soc., 146, 2038, 10.1149/1.1391888

2000, Solid State Ionics, 138, 91, 10.1016/S0167-2738(00)00777-3

2010, Solid State Ionics, 181, 496, 10.1016/j.ssi.2010.02.008

1997, Solid State Ionics, 97, 1, 10.1016/S0167-2738(97)00082-9

2017, Solid State Ionics, 299, 64, 10.1016/j.ssi.2016.09.012

1992, Solid State Ionics, 52, 111, 10.1016/0167-2738(92)90097-9

1994, Solid State Ionics, 70-71, 267, 10.1016/0167-2738(94)90321-2

2001, Solid State Ionics, 145, 295, 10.1016/S0167-2738(01)00953-5

2014, Ceram. Int., 40, 15073, 10.1016/j.ceramint.2014.06.115

2008, Solid State Ionics, 179, 2240, 10.1016/j.ssi.2008.08.005

2019

2005, J. Am. Ceram. Soc., 88, 2362, 10.1111/j.1551-2916.2005.00449.x

2016, Solid State Ionics, 294, 37, 10.1016/j.ssi.2016.06.020

2009, Chem. Mater., 21, 2755, 10.1021/cm900208w

2011, Int. J. Hydrogen Energy, 36, 8450, 10.1016/j.ijhydene.2011.04.037

2014, J. Mater. Chem. A, 2, 16107, 10.1039/C4TA02848A

2014, Phys. Chem. Chem. Phys., 16, 5076, 10.1039/C4CP00468J

2009, Solid State Ionics, 180, 891, 10.1016/j.ssi.2009.02.018

2018, ChemSusChem, 11, 4102, 10.1002/cssc.201801837

2019, ECS Trans., 91, 997, 10.1149/09101.0997ecst

Fuelcellenergy, Fuel Cells

2011, Science, 334, 935, 10.1126/science.1204090

2017, IEEE Power Energy Mag., 15, 61, 10.1109/MPE.2016.2637122

2016, Appl. Energy, 163, 93, 10.1016/j.apenergy.2015.10.140

2017, Appl. Energy, 200, 358, 10.1016/j.apenergy.2017.05.048

2015, Renewable Energy, 75, 14, 10.1016/j.renene.2014.09.028

2009, Energies, 2, 595, 10.3390/en20300595

2015, Energies, 9, 14, 10.3390/en9010014

2013, J. Environ. Pollut. Hum. Health, 1, 6

2012, J. Nat. Gas Sci. Eng., 9, 196, 10.1016/j.jngse.2012.07.001

1996, Chem. Mater., 8, 610, 10.1021/cm950192a

2004, Chem. Rev., 104, 4637, 10.1021/cr020715f

1996, Chem. Mater., 8, 610, 10.1021/cm950192a

2014, Energy Environ. Sci., 7, 552, 10.1039/c3ee42926a

2009, Adv. Mater., 21, 943, 10.1002/adma.200802428

1999, Solid State Ionics, 126, 163, 10.1016/S0167-2738(99)00108-3

2017, Energy Environ. Sci., 10, 176, 10.1039/C6EE01915C

2004, Nature, 431, 170, 10.1038/nature02863

2005, Solid State Ionics, 176, 457, 10.1016/j.ssi.2004.09.007

2002, Solid State Ionics, 149, 11, 10.1016/S0167-2738(02)00131-5

2015, Nano Lett., 15, 1703, 10.1021/nl5043566

2008, J. Power Sources, 185, 193, 10.1016/j.jpowsour.2008.06.075

2010, J. Mater. Chem., 20, 3799, 10.1039/b922430k

2007, J. Power Sources, 174, 255, 10.1016/j.jpowsour.2007.08.077

2008, Acta Mater., 56, 4876, 10.1016/j.actamat.2008.06.004

2006, J. Solid State Electrochem., 10, 538, 10.1007/s10008-006-0127-x

2006, Solid State Ionics, 177, 1205, 10.1016/j.ssi.2006.05.005

2010, J. Am. Ceram. Soc., 93, 2329, 10.1111/j.1551-2916.2010.03743.x

2016, Chemistry, 22, 2719, 10.1002/chem.201504279

2018, J. Phys. Chem. C, 122, 4172, 10.1021/acs.jpcc.7b11904

2003, J. Power Sources, 113, 1, 10.1016/S0378-7753(02)00455-X

2010, J. Power Sources, 195, 4704, 10.1016/j.jpowsour.2010.02.049

2016, J. Solid State Electrochem., 20, 2071, 10.1007/s10008-016-3211-x

2013, Nano Lett., 13, 4340, 10.1021/nl402138w

2018, Adv. Funct. Mater., 28, 1801241, 10.1002/adfm.201801241

2014, ChemSusChem, 7, 2811, 10.1002/cssc.201402351

2009, Fuel Cells, 10, 166–173, 10.1002/fuce.200900033

2010, J. Phys. Chem. A, 114, 3764, 10.1021/jp9042599

2017, Sci. Technol. Adv. Mater., 18, 977, 10.1080/14686996.2017.1402661

2016, Nonstoichiometry Compound VI

2019, Joule, 3, 2842, 10.1016/j.joule.2019.07.004

2018, ChemSusChem, 11, 3423, 10.1002/cssc.201801193

2014, ChemSusChem, 7, 2811, 10.1002/cssc.201402351

2018, J. Electrochem. Soc., 165, F581, 10.1149/2.0161809jes

2018, J. Electrochem. Soc., 165, F845, 10.1149/2.1091810jes

2010, Int. J. Hydrogen Energy, 35, 10624, 10.1016/j.ijhydene.2010.07.122

2016, Int. J. Hydrogen Energy, 41, 2931, 10.1016/j.ijhydene.2015.10.100

2018, Nano Energy, 44, 121, 10.1016/j.nanoen.2017.11.074

2002, J. Membr. Sci., 203, 175, 10.1016/S0376-7388(02)00005-4

2018, Adv. Energy Mater., 8, 1801315, 10.1002/aenm.201801315

2001, Sep. Purif. Technol., 25, 419, 10.1016/S1383-5866(01)00071-5

2000, J. Membr. Sci., 172, 177, 10.1016/S0376-7388(00)00337-9

2018, Adv. Funct. Mater., 28, 1704907, 10.1002/adfm.201704907

2018, Inorganics, 6, 83, 10.3390/inorganics6030083

2016, Materials, 9, 858, 10.3390/ma9100858

2008, Phys Chem Chem Phys., 10, 4644, 10.1039/b804378g

2016, ChemElectroChem, 3, 805, 10.1002/celc.201500529

2016, Nature, 537, 528, 10.1038/nature19090

2016, Nat. Mater., 15, 1010, 10.1038/nmat4659

2014, J. Am. Ceram. Soc., 97, 2654, 10.1111/jace.12990

2010, Nat. Mater., 9, 846, 10.1038/nmat2837

2011, Adv. Funct. Mater., 21, 158, 10.1002/adfm.201001540

2011, Electrochem. Commun., 13, 403, 10.1016/j.elecom.2011.02.004

2013, J. Power Sources, 240, 323, 10.1016/j.jpowsour.2013.04.028

2013, RSC Adv., 3, 15769, 10.1039/c3ra41828f

2016, J. Mater. Chem. A, 4, 6395, 10.1039/C5TA10670B

2017, Nat. Commun., 8, 14553, 10.1038/ncomms14553

2011, Energy Environ. Sci., 4, 940, 10.1039/C0EE00231C

2009, Appl. Catal. A, 354, 1, 10.1016/j.apcata.2008.10.055

2006, Science, 312, 254, 10.1126/science.1125877

2016, J. Mater. Chem. A, 4, 18031, 10.1039/C6TA08031F

2014, J. Mater. Chem. A, 2, 17041, 10.1039/C4TA02662D

2003, J. Power Sources, 118, 150, 10.1016/S0378-7753(03)00072-7

2016, Adv. Mater., 28, 8922, 10.1002/adma.201602103

2008, J. Power Sources, 176, 122, 10.1016/j.jpowsour.2007.10.056

2019, J. Electrochem. Soc., 166, F687, 10.1149/2.0651910jes

2015, Nat. Commun., 6, 8120, 10.1038/ncomms9120

2015, Nano Energy, 11, 704, 10.1016/j.nanoen.2014.12.001

2016, ACS Nano, 10, 8660, 10.1021/acsnano.6b03979

2015, J. Mater. Chem. A, 3, 11048, 10.1039/C5TA01733E

2013, Nat. Chem., 5, 916, 10.1038/nchem.1773

2011, Nat. Commun., 2, 357, 10.1038/ncomms1359

2017, ECS Trans., 78, 1963, 10.1149/07801.1963ecst

2017, J. Power Sources, 369, 65, 10.1016/j.jpowsour.2017.09.024

2003, J. Eur. Ceram. Soc., 23, 221, 10.1016/S0955-2219(02)00173-5

2004, J. Eur. Ceram. Soc., 24, 705, 10.1016/S0955-2219(03)00262-0

1997, Solid State Ionics, 100, 193, 10.1016/S0167-2738(97)00350-0

1996, Solid State Ionics, 86-88, 659, 10.1016/0167-2738(96)00231-7

2016, J. Am. Ceram. Soc., 99, 3685, 10.1111/jace.14395

2019, J. Electrochem. Soc., 166, F1007, 10.1149/2.1071912jes

2015, Nat. Mater., 14, 239, 10.1038/nmat4165

2012, J. Electrochem. Soc., 160, F763, 10.1149/2.018212jes

2016, RSC Adv., 6, 641, 10.1039/C5RA19844E

2018, J. Mater. Chem. A, 6, 18057, 10.1039/C8TA04018D

2015, Int. J. Hydrogen Energy, 40, 7920, 10.1016/j.ijhydene.2015.04.067

2013, Int. J. Hydrogen Energy, 38, 14943, 10.1016/j.ijhydene.2013.09.082

2017, J. Mater. Chem. A, 5, 22945, 10.1039/C7TA05841A

DOE Technical Targets for Hydrogen Production from Electrolysis

2019, Membranes, 9, 77, 10.3390/membranes9070077

2018, Adv. Sci., 5, 1870070, 10.1002/advs.201870070

2017, Int. J. Hydrogen Energy, 42, 16722, 10.1016/j.ijhydene.2017.04.267

2015, Faraday Discuss., 182, 49, 10.1039/C5FD00012B

2009, Solid State Ionics, 180, 990, 10.1016/j.ssi.2009.03.016

2003, J. Electrochem. Soc., 150, A790, 10.1149/1.1574031

2004, J. Mater. Res., 19, 2366, 10.1557/JMR.2004.0302

2012, Solid State Ionics, 213, 2, 10.1016/j.ssi.2011.09.005

2007, Solid State Ionics, 178, 661, 10.1016/j.ssi.2007.02.010

2017, J. Solid State Chem., 247, 147, 10.1016/j.jssc.2017.01.010

2009, Fuel Cell Fundamentals

2015, Overgeneration from Solar Energy in California. A Field Guide to the Duck Chart

2016, Renewable Sustainable Energy Rev., 65, 961, 10.1016/j.rser.2016.07.046

2012, Energy Environ. Sci., 5, 9331, 10.1039/c2ee22554a

See https://energymag.net/round-trip-efficiency/ for information about the round trip efficiencies of energy storage technologies.

2014, Energy Environ. Sci., 7, 4018, 10.1039/C4EE02786H

2007, Int. J. Hydrogen Energy, 32, 3253, 10.1016/j.ijhydene.2007.04.042

F.R. Ammonia Market Research

2019, Nat. Catal., 2, 290, 10.1038/s41929-019-0252-4

2018, Sci. Adv., 4, e1700336, 10.1126/sciadv.1700336

2017, Angew. Chem., Int. Ed., 56, 2699, 10.1002/anie.201609533

2000, J. Catal., 193, 80, 10.1006/jcat.2000.2877

2018, Nano Energy, 49, 316, 10.1016/j.nanoen.2018.04.039

1998, Science, 282, 98, 10.1126/science.282.5386.98

2000, J. Catal., 193, 80, 10.1006/jcat.2000.2877

2009, J. Alloys Compd., 485, 69, 10.1016/j.jallcom.2009.05.108

2005, Mater. Res. Bull., 40, 1294, 10.1016/j.materresbull.2005.04.008

2011, J. Solid State Electrochem., 15, 1845, 10.1007/s10008-011-1376-x

2010, J. Membr. Sci., 360, 397, 10.1016/j.memsci.2010.05.038

2015, J. Power Sources, 284, 245, 10.1016/j.jpowsour.2015.03.002

2011, J. Mater. Sci., 46, 4690, 10.1007/s10853-011-5376-0

2004, Solid State Ionics, 168, 117, 10.1016/j.ssi.2004.01.025

2010, J. Mater. Sci., 45, 5860, 10.1007/s10853-010-4662-6

2000, J. Phys. Chem. A, 104, 10600, 10.1021/jp002236v

2014, Science, 344, 616, 10.1126/science.1253150

2006, J. Catal., 239, 441, 10.1016/j.jcat.2006.02.018

2003, J. Catal., 220, 57, 10.1016/S0021-9517(03)00236-7

2001, Appl. Catal. A, 214, 95, 10.1016/S0926-860X(01)00470-7

2008, J. Am. Chem. Soc., 130, 3722, 10.1021/ja7110916

2008, J. Am. Chem. Soc., 130, 3722, 10.1021/ja7110916

2013, J. Energy Chem., 22, 1, 10.1016/S2095-4956(13)60001-7

2003, Catal. Lett., 91, 155, 10.1023/B:CATL.0000007149.48132.5a

2007, Ind. Eng. Chem. Res., 46, 4063, 10.1021/ie0609564

2006, Catal. Lett., 109, 21, 10.1007/s10562-006-0066-2

2016, Energy Environ. Sci., 9, 207, 10.1039/C5EE03017J

2019, 1861

2019, 1876