2016, Int. J. Hydrogen Energy, 41, 20993, 10.1016/j.ijhydene.2016.05.208
2003, J. Power Sources, 114, 32, 10.1016/S0378-7753(02)00542-6
2019, Adv. Energy Mater., 9, 1801284, 10.1002/aenm.201801284
2020, Mater. Today, 32, 178, 10.1016/j.mattod.2019.06.005
2016, Energy, 116, 1131, 10.1016/j.energy.2016.10.033
2017, Renewable Energy, 113, 620, 10.1016/j.renene.2017.06.027
2018, Engineering, 4, 352, 10.1016/j.eng.2018.05.007
2017, ECS Trans., 78, 125, 10.1149/07801.0125ecst
2015, Demonstration of SOFC-micro gas turbine (MGT) hybrid systems for commercialization, Mitsubishi Heavy Ind. - Tech. Rev., 52, 47
2015, ECS Trans., 68, 15, 10.1149/06801.0015ecst
2016, Intermediate-Temperature Solid Oxide Fuel Cells, 247, 10.1007/978-3-662-52936-2_8
2011, ECS Transactions, 121
2015, MRS Bull., 40, 1067, 10.1557/mrs.2015.259
2015, Chem. Soc. Rev., 44, 5926, 10.1039/C4CS00442F
2018, Adv. Mater., 30, 1800561, 10.1002/adma.201800561
2016, Interface Mag., 25, 65, 10.1149/2.F04163if
2015, Science, 349, 1529, 10.1126/science.aab3033
2016, Nat. Energy, 1, 16102, 10.1038/nenergy.2016.102
2015, Nature, 527, 78, 10.1038/nature15746
2017, Nat. Rev. Mater., 2, 16080, 10.1038/natrevmats.2016.80
2016, Nat. Commun., 7, 11741, 10.1038/ncomms11741
2019, J. Energy Storage, 23, 392, 10.1016/j.est.2019.03.001
2016, Hydrogen Energy Engineering: A Japanese Perspective, 137, 10.1007/978-4-431-56042-5_9
2018, Nat. Catal., 1, 814, 10.1038/s41929-018-0179-1
2017, Chem. Soc. Rev., 46, 1427, 10.1039/C6CS00403B
2015, Nat. Mater., 14, 239, 10.1038/nmat4165
2013, J. Power Sources, 223, 129, 10.1016/j.jpowsour.2012.09.061
2014, Curr. Appl. Phys., 14, 672, 10.1016/j.cap.2014.02.013
2019, Energy Environ. Sci., 12, 206, 10.1039/C8EE02865F
2015, Energy Environ. Sci., 8, 2471, 10.1039/C5EE01485A
2013, Int. J. Hydrogen Energy, 38, 4281, 10.1016/j.ijhydene.2013.01.192
2011, Energy Environ. Sci., 4, 944, 10.1039/C0EE00457J
2019, Nat. Energy, 4, 230, 10.1038/s41560-019-0333-2
2019, Energy Environ. Sci., 12, 1592, 10.1039/C9EE00219G
2015, Chem. Eng. J., 260, 427, 10.1016/j.cej.2014.09.029
2016, Science, 353, 563, 10.1126/science.aag0274
2015, Science, 349, 1321, 10.1126/science.aab3987
2018, Nature, 557, 217, 10.1038/s41586-018-0082-6
2017, Nat. Energy, 2, 923, 10.1038/s41560-017-0029-4
2009, Science, 326, 126, 10.1126/science.1174811
2019, Nat. Mater., 18, 752, 10.1038/s41563-019-0388-2
2018, Nat. Energy, 3, 202, 10.1038/s41560-017-0085-9
2018, Nat. Energy, 3, 870, 10.1038/s41560-018-0230-0
1964, Electrolyte solide á base de AlLaO3. Application aux piles á combustible, C. R. Acad. Sci., 2813
1966, Ber. Bunsengesellschaft Phys. Chem., 70, 781, 10.1002/bbpc.19660700804
1982, J. Power Sources, 7, 293, 10.1016/0378-7753(82)80018-9
1982, J. Appl. Electrochem., 12, 645, 10.1007/BF00617484
1981, Solid State Ionics, 3-4, 359, 10.1016/0167-2738(81)90113-2
1987, Int. J. Hydrogen Energy, 12, 73, 10.1016/0360-3199(87)90082-6
1999, Solid State Ionics, 125, 271, 10.1016/S0167-2738(99)00185-X
1996, Solid State Ionics, 86-88, 9, 10.1016/0167-2738(96)00087-2
1983, Solid State Ionics, 9-10, 1021, 10.1016/0167-2738(83)90125-X
1986, J. Appl. Electrochem., 16, 663, 10.1007/BF01006916
1993, J. Electrochem. Soc., 140, 459, 10.1149/1.2221068
2003, Annu. Rev. Mater. Res., 33, 333, 10.1146/annurev.matsci.33.022802.091825
2007, J. Mater. Res., 22, 1322, 10.1557/jmr.2007.0163
2009, Chem. Mater., 21, 2755, 10.1021/cm900208w
2010, Solid State Ionics, 181, 496, 10.1016/j.ssi.2010.02.008
2013, Solid State Ionics, 253, 201, 10.1016/j.ssi.2013.09.025
2010, J. Mater. Chem., 20, 6333, 10.1039/c0jm00381f
2015, J. Electrochem. Soc., 162, F803, 10.1149/2.0021508jes
2018, Catal. Lett., 148, 3592, 10.1007/s10562-018-2553-7
1993, J. Electrochem. Soc., 140, 1687, 10.1149/1.2221624
1982, J. Appl. Electrochem., 12, 645, 10.1007/BF00617484
1982, J. Power Sources, 7, 293, 10.1016/0378-7753(82)80018-9
1987, Int. J. Hydrogen Energy, 12, 73, 10.1016/0360-3199(87)90082-6
1995, Solid State Ionics, 79, 333, 10.1016/0167-2738(95)00083-I
2005, J. Am. Ceram. Soc., 88, 2362, 10.1111/j.1551-2916.2005.00449.x
2018, Energy Environ. Sci., 11, 1710, 10.1039/C8EE00645H
2019, Joule, 3, 2842, 10.1016/j.joule.2019.07.004
2001, Solid State Ionics, 145, 333, 10.1016/S0167-2738(01)00928-6
2014, J. Mater. Chem. A, 2, 16915, 10.1039/C4TA03213F
2016, J. Struct. Chem., 57, 910, 10.1134/S0022476616050097
1997, Solid State Ionics, 98, 1, 10.1016/S0167-2738(97)00102-1
2012, J. Power Sources, 201, 49, 10.1016/j.jpowsour.2011.10.104
2008, Chem. Mater., 20, 3480, 10.1021/cm7025448
2006, Nat. Mater., 5, 193, 10.1038/nmat1591
2012, J. Phys. Chem. C, 116, 19117, 10.1021/jp304904j
2013, Acta Mater., 61, 6933, 10.1016/j.actamat.2013.08.005
2007, J. Membr. Sci., 299, 156, 10.1016/j.memsci.2007.04.037
Proton-Conducting Ceramics: From Fundamentals to Applied Research
2012, Adv. Mater., 24, 195, 10.1002/adma.201103102
1988, J. Electrochem. Soc., 135, 529, 10.1149/1.2095649
1999, J. Electrochem. Soc., 146, 2038, 10.1149/1.1391888
2000, Solid State Ionics, 138, 91, 10.1016/S0167-2738(00)00777-3
2010, Solid State Ionics, 181, 496, 10.1016/j.ssi.2010.02.008
1997, Solid State Ionics, 97, 1, 10.1016/S0167-2738(97)00082-9
2017, Solid State Ionics, 299, 64, 10.1016/j.ssi.2016.09.012
1992, Solid State Ionics, 52, 111, 10.1016/0167-2738(92)90097-9
1994, Solid State Ionics, 70-71, 267, 10.1016/0167-2738(94)90321-2
2001, Solid State Ionics, 145, 295, 10.1016/S0167-2738(01)00953-5
2014, Ceram. Int., 40, 15073, 10.1016/j.ceramint.2014.06.115
2008, Solid State Ionics, 179, 2240, 10.1016/j.ssi.2008.08.005
2005, J. Am. Ceram. Soc., 88, 2362, 10.1111/j.1551-2916.2005.00449.x
2016, Solid State Ionics, 294, 37, 10.1016/j.ssi.2016.06.020
2009, Chem. Mater., 21, 2755, 10.1021/cm900208w
2011, Int. J. Hydrogen Energy, 36, 8450, 10.1016/j.ijhydene.2011.04.037
2014, J. Mater. Chem. A, 2, 16107, 10.1039/C4TA02848A
2014, Phys. Chem. Chem. Phys., 16, 5076, 10.1039/C4CP00468J
2009, Solid State Ionics, 180, 891, 10.1016/j.ssi.2009.02.018
2018, ChemSusChem, 11, 4102, 10.1002/cssc.201801837
2019, ECS Trans., 91, 997, 10.1149/09101.0997ecst
Fuelcellenergy, Fuel Cells
2011, Science, 334, 935, 10.1126/science.1204090
2017, IEEE Power Energy Mag., 15, 61, 10.1109/MPE.2016.2637122
2016, Appl. Energy, 163, 93, 10.1016/j.apenergy.2015.10.140
2017, Appl. Energy, 200, 358, 10.1016/j.apenergy.2017.05.048
2015, Renewable Energy, 75, 14, 10.1016/j.renene.2014.09.028
2009, Energies, 2, 595, 10.3390/en20300595
2015, Energies, 9, 14, 10.3390/en9010014
2013, J. Environ. Pollut. Hum. Health, 1, 6
2012, J. Nat. Gas Sci. Eng., 9, 196, 10.1016/j.jngse.2012.07.001
1996, Chem. Mater., 8, 610, 10.1021/cm950192a
2004, Chem. Rev., 104, 4637, 10.1021/cr020715f
1996, Chem. Mater., 8, 610, 10.1021/cm950192a
2014, Energy Environ. Sci., 7, 552, 10.1039/c3ee42926a
2009, Adv. Mater., 21, 943, 10.1002/adma.200802428
1999, Solid State Ionics, 126, 163, 10.1016/S0167-2738(99)00108-3
2017, Energy Environ. Sci., 10, 176, 10.1039/C6EE01915C
2004, Nature, 431, 170, 10.1038/nature02863
2005, Solid State Ionics, 176, 457, 10.1016/j.ssi.2004.09.007
2002, Solid State Ionics, 149, 11, 10.1016/S0167-2738(02)00131-5
2015, Nano Lett., 15, 1703, 10.1021/nl5043566
2008, J. Power Sources, 185, 193, 10.1016/j.jpowsour.2008.06.075
2010, J. Mater. Chem., 20, 3799, 10.1039/b922430k
2007, J. Power Sources, 174, 255, 10.1016/j.jpowsour.2007.08.077
2008, Acta Mater., 56, 4876, 10.1016/j.actamat.2008.06.004
2006, J. Solid State Electrochem., 10, 538, 10.1007/s10008-006-0127-x
2006, Solid State Ionics, 177, 1205, 10.1016/j.ssi.2006.05.005
2010, J. Am. Ceram. Soc., 93, 2329, 10.1111/j.1551-2916.2010.03743.x
2016, Chemistry, 22, 2719, 10.1002/chem.201504279
2018, J. Phys. Chem. C, 122, 4172, 10.1021/acs.jpcc.7b11904
2003, J. Power Sources, 113, 1, 10.1016/S0378-7753(02)00455-X
2010, J. Power Sources, 195, 4704, 10.1016/j.jpowsour.2010.02.049
2016, J. Solid State Electrochem., 20, 2071, 10.1007/s10008-016-3211-x
2013, Nano Lett., 13, 4340, 10.1021/nl402138w
2018, Adv. Funct. Mater., 28, 1801241, 10.1002/adfm.201801241
2014, ChemSusChem, 7, 2811, 10.1002/cssc.201402351
2009, Fuel Cells, 10, 166–173, 10.1002/fuce.200900033
2010, J. Phys. Chem. A, 114, 3764, 10.1021/jp9042599
2017, Sci. Technol. Adv. Mater., 18, 977, 10.1080/14686996.2017.1402661
2016, Nonstoichiometry Compound VI
2019, Joule, 3, 2842, 10.1016/j.joule.2019.07.004
2018, ChemSusChem, 11, 3423, 10.1002/cssc.201801193
2014, ChemSusChem, 7, 2811, 10.1002/cssc.201402351
2018, J. Electrochem. Soc., 165, F581, 10.1149/2.0161809jes
2018, J. Electrochem. Soc., 165, F845, 10.1149/2.1091810jes
2010, Int. J. Hydrogen Energy, 35, 10624, 10.1016/j.ijhydene.2010.07.122
2016, Int. J. Hydrogen Energy, 41, 2931, 10.1016/j.ijhydene.2015.10.100
2018, Nano Energy, 44, 121, 10.1016/j.nanoen.2017.11.074
2002, J. Membr. Sci., 203, 175, 10.1016/S0376-7388(02)00005-4
2018, Adv. Energy Mater., 8, 1801315, 10.1002/aenm.201801315
2001, Sep. Purif. Technol., 25, 419, 10.1016/S1383-5866(01)00071-5
2000, J. Membr. Sci., 172, 177, 10.1016/S0376-7388(00)00337-9
2018, Adv. Funct. Mater., 28, 1704907, 10.1002/adfm.201704907
2018, Inorganics, 6, 83, 10.3390/inorganics6030083
2016, Materials, 9, 858, 10.3390/ma9100858
2008, Phys Chem Chem Phys., 10, 4644, 10.1039/b804378g
2016, ChemElectroChem, 3, 805, 10.1002/celc.201500529
2016, Nature, 537, 528, 10.1038/nature19090
2016, Nat. Mater., 15, 1010, 10.1038/nmat4659
2014, J. Am. Ceram. Soc., 97, 2654, 10.1111/jace.12990
2010, Nat. Mater., 9, 846, 10.1038/nmat2837
2011, Adv. Funct. Mater., 21, 158, 10.1002/adfm.201001540
2011, Electrochem. Commun., 13, 403, 10.1016/j.elecom.2011.02.004
2013, J. Power Sources, 240, 323, 10.1016/j.jpowsour.2013.04.028
2013, RSC Adv., 3, 15769, 10.1039/c3ra41828f
2016, J. Mater. Chem. A, 4, 6395, 10.1039/C5TA10670B
2017, Nat. Commun., 8, 14553, 10.1038/ncomms14553
2011, Energy Environ. Sci., 4, 940, 10.1039/C0EE00231C
2009, Appl. Catal. A, 354, 1, 10.1016/j.apcata.2008.10.055
2006, Science, 312, 254, 10.1126/science.1125877
2016, J. Mater. Chem. A, 4, 18031, 10.1039/C6TA08031F
2014, J. Mater. Chem. A, 2, 17041, 10.1039/C4TA02662D
2003, J. Power Sources, 118, 150, 10.1016/S0378-7753(03)00072-7
2016, Adv. Mater., 28, 8922, 10.1002/adma.201602103
2008, J. Power Sources, 176, 122, 10.1016/j.jpowsour.2007.10.056
2019, J. Electrochem. Soc., 166, F687, 10.1149/2.0651910jes
2015, Nat. Commun., 6, 8120, 10.1038/ncomms9120
2015, Nano Energy, 11, 704, 10.1016/j.nanoen.2014.12.001
2016, ACS Nano, 10, 8660, 10.1021/acsnano.6b03979
2015, J. Mater. Chem. A, 3, 11048, 10.1039/C5TA01733E
2013, Nat. Chem., 5, 916, 10.1038/nchem.1773
2011, Nat. Commun., 2, 357, 10.1038/ncomms1359
2017, ECS Trans., 78, 1963, 10.1149/07801.1963ecst
2017, J. Power Sources, 369, 65, 10.1016/j.jpowsour.2017.09.024
2003, J. Eur. Ceram. Soc., 23, 221, 10.1016/S0955-2219(02)00173-5
2004, J. Eur. Ceram. Soc., 24, 705, 10.1016/S0955-2219(03)00262-0
1997, Solid State Ionics, 100, 193, 10.1016/S0167-2738(97)00350-0
1996, Solid State Ionics, 86-88, 659, 10.1016/0167-2738(96)00231-7
2016, J. Am. Ceram. Soc., 99, 3685, 10.1111/jace.14395
2019, J. Electrochem. Soc., 166, F1007, 10.1149/2.1071912jes
2015, Nat. Mater., 14, 239, 10.1038/nmat4165
2012, J. Electrochem. Soc., 160, F763, 10.1149/2.018212jes
2016, RSC Adv., 6, 641, 10.1039/C5RA19844E
2018, J. Mater. Chem. A, 6, 18057, 10.1039/C8TA04018D
2015, Int. J. Hydrogen Energy, 40, 7920, 10.1016/j.ijhydene.2015.04.067
2013, Int. J. Hydrogen Energy, 38, 14943, 10.1016/j.ijhydene.2013.09.082
2017, J. Mater. Chem. A, 5, 22945, 10.1039/C7TA05841A
DOE Technical Targets for Hydrogen Production from Electrolysis
2019, Membranes, 9, 77, 10.3390/membranes9070077
2018, Adv. Sci., 5, 1870070, 10.1002/advs.201870070
2017, Int. J. Hydrogen Energy, 42, 16722, 10.1016/j.ijhydene.2017.04.267
2015, Faraday Discuss., 182, 49, 10.1039/C5FD00012B
2009, Solid State Ionics, 180, 990, 10.1016/j.ssi.2009.03.016
2003, J. Electrochem. Soc., 150, A790, 10.1149/1.1574031
2004, J. Mater. Res., 19, 2366, 10.1557/JMR.2004.0302
2012, Solid State Ionics, 213, 2, 10.1016/j.ssi.2011.09.005
2007, Solid State Ionics, 178, 661, 10.1016/j.ssi.2007.02.010
2017, J. Solid State Chem., 247, 147, 10.1016/j.jssc.2017.01.010
2009, Fuel Cell Fundamentals
2015, Overgeneration from Solar Energy in California. A Field Guide to the Duck Chart
2016, Renewable Sustainable Energy Rev., 65, 961, 10.1016/j.rser.2016.07.046
2012, Energy Environ. Sci., 5, 9331, 10.1039/c2ee22554a
See https://energymag.net/round-trip-efficiency/ for information about the round trip efficiencies of energy storage technologies.
2014, Energy Environ. Sci., 7, 4018, 10.1039/C4EE02786H
2007, Int. J. Hydrogen Energy, 32, 3253, 10.1016/j.ijhydene.2007.04.042
F.R. Ammonia Market Research
2019, Nat. Catal., 2, 290, 10.1038/s41929-019-0252-4
2018, Sci. Adv., 4, e1700336, 10.1126/sciadv.1700336
2017, Angew. Chem., Int. Ed., 56, 2699, 10.1002/anie.201609533
2000, J. Catal., 193, 80, 10.1006/jcat.2000.2877
2018, Nano Energy, 49, 316, 10.1016/j.nanoen.2018.04.039
1998, Science, 282, 98, 10.1126/science.282.5386.98
2000, J. Catal., 193, 80, 10.1006/jcat.2000.2877
2009, J. Alloys Compd., 485, 69, 10.1016/j.jallcom.2009.05.108
2005, Mater. Res. Bull., 40, 1294, 10.1016/j.materresbull.2005.04.008
2011, J. Solid State Electrochem., 15, 1845, 10.1007/s10008-011-1376-x
2010, J. Membr. Sci., 360, 397, 10.1016/j.memsci.2010.05.038
2015, J. Power Sources, 284, 245, 10.1016/j.jpowsour.2015.03.002
2011, J. Mater. Sci., 46, 4690, 10.1007/s10853-011-5376-0
2004, Solid State Ionics, 168, 117, 10.1016/j.ssi.2004.01.025
2010, J. Mater. Sci., 45, 5860, 10.1007/s10853-010-4662-6
2000, J. Phys. Chem. A, 104, 10600, 10.1021/jp002236v
2014, Science, 344, 616, 10.1126/science.1253150
2006, J. Catal., 239, 441, 10.1016/j.jcat.2006.02.018
2003, J. Catal., 220, 57, 10.1016/S0021-9517(03)00236-7
2001, Appl. Catal. A, 214, 95, 10.1016/S0926-860X(01)00470-7
2008, J. Am. Chem. Soc., 130, 3722, 10.1021/ja7110916
2008, J. Am. Chem. Soc., 130, 3722, 10.1021/ja7110916
2013, J. Energy Chem., 22, 1, 10.1016/S2095-4956(13)60001-7
2003, Catal. Lett., 91, 155, 10.1023/B:CATL.0000007149.48132.5a
2007, Ind. Eng. Chem. Res., 46, 4063, 10.1021/ie0609564
2006, Catal. Lett., 109, 21, 10.1007/s10562-006-0066-2
2016, Energy Environ. Sci., 9, 207, 10.1039/C5EE03017J