Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes

Annual Review of Materials Research - Tập 33 Số 1 - Trang 289-319 - 2003
Stephen J. Paddison1
1Computational Nanoscience Group, PSRL, Motorola Labs, Motorola Inc. 4200 W. Jemez Rd., Suite #300, Los Alamos, New Mexico 87544;

Tóm tắt

▪ Abstract  The need to operate polymer electrolyte membrane (PEM) fuel cells at temperatures above 100°C, where the amount of water in the membrane is restricted, has provided much of the motivation for understanding the mechanisms of proton conduction at low degrees of hydration. Although experiments have not provided any direct information, numerous theoretical investigations have begun to provide the basis for understanding the mechanisms of proton conduction in these nano-phase-separated materials. Both the hydrated morphology and the nature of the confined water in the hydrophilic domains influence proton dissociation from the acidic sites (i.e., −SO3H), transfer to the water environment, and transport through the membrane. The following molecular processes are discussed in connection to their role in the conduction of protons in sulfonic acid–based polymer electrolyte membranes (PEMs): (a) local chemistry of the hydrophilic side chains; its effect on the dissociation of the proton and eventual stabilization (separation) of the proton in the water; (b) the presence of neighboring sulfonic acid groups on proton transfer; and (c) the effect of the distribution of the sulfonate groups on the transport of protons in the channels/pores of the membrane.

Từ khóa


Tài liệu tham khảo

10.1038/35104620

Savadogo O, 1998, J. New Mater. Electrochem. Syst., 1, 47

10.1149/1.1838220

10.1149/1.1390862

10.1016/S0167-2738(97)00082-9

10.1016/S0376-7388(00)00632-3

10.1016/S0376-7388(00)00635-9

10.1016/S0032-3861(97)00421-7

10.1149/1.1390638

Bonnet B, 2000, J. New Mater. Electrochem. Syst., 3, 87

Kerres J, Ullrich A, Meier F, Häring T. 1999.Solid State Ionics125:243–49

Zhang W, 1998, Acta Polym. Sinter., 5, 608

Lassègues JC. 1992. InProton Conductors: Solids, Membranes and Gels-Materials and Devices, ed. P Colomban, pp. 311–28. Cambridge, MA: Cambridge Univ. Press

10.1149/1.2044337

Dippel T, Kreuer KD, Lassègues JC, Rodriguez D. 1993.Solid State Ionics61:41–46

Bozkurt A, Ise M, Kreuer KD, Meyer WH, Wegner G. 1999.Solid State Ionics125:225–33

10.1149/1.1836622

10.1002/app.1977.070210401

10.1016/0013-4686(94)E0051-Z

10.1021/ma970801v

10.1021/ma9912709

10.1021/jp020245t

10.1021/ma011578b

10.1002/pol.1981.180191103

10.1002/macp.1994.021951204

10.1002/pol.1982.180200109

10.1021/jp9623047

10.1021/ma00230a023

10.1021/ma00231a014

10.1016/0022-0728(90)87166-H

10.1039/a904460d

10.1021/ma00183a024

10.1021/ma00187a016

10.1021/ma00191a042

10.1149/1.2056223

10.1016/S0022-0728(98)00321-0

Paddison SJ, 2000, J. New Mater. Electrochem. Syst., 3, 291

10.1016/0032-3861(78)90176-3

10.1016/S0376-7388(00)80518-9

10.1016/0304-3991(92)90111-V

10.1016/S0032-3861(97)00421-7

10.1002/(SICI)1097-4628(19980418)68:3<503::AID-APP16>3.0.CO;2-V

10.1023/A:1004891917643

10.1021/ma000464h

10.1021/ac971213i

10.1021/ja00492a008

10.1021/ma00156a015

10.1021/ma00012a008

10.1021/j100168a060

10.1002/mrc.1260320803

10.1021/ma9600926

10.1016/S0032-3861(98)00484-4

10.1021/j100281a058

10.1021/ma00196a015

10.1016/0032-3861(79)90103-4

10.1139/v80-237

10.1016/0167-2738(96)00084-7

10.1016/0032-3861(80)90202-5

Rodmacq B, Coey JMD, Pinéri M. 1982. InPerfluorinated Ionomer Membranes, ed. A Eisenberg, HL Yeager, pp. 171–94. Washington, DC: Am. Chem. Soc.

10.1021/ja00382a014

10.1021/ja00537a009

10.1021/j100260a013

10.1021/ma951616p

10.1016/S0376-7388(00)80843-1

10.1149/1.2221160

Hashimoto T, Fujimura M, Kawai H. 1982. InPerfluorinated Ionomer Membranes, ed. A Eisenberg, HL Yeager, pp. 217–48. Washington, DC: Am. Chem. Soc.

10.1021/ma00229a020

10.1016/S0376-7388(00)81563-X

Deleted in proof

10.1021/ma00230a023

Litt MH. 1997.Polymer Preprints38:80–81

10.1016/0032-3950(90)90068-H

Krueger JJ. 2000.Microstructural phase behavior in perfluorosulphonated ionomers. PhD Diss. Univ. South Carolina. 99 pp.

10.1021/ma0020638

10.1002/1521-3919(20020601)11:5<566::AID-MATS566>3.0.CO;2-0

Ise M. 2000.Polymer-Elektrolyt-Membranen: Untersuchungen zur Mikrostruktur und zu den Transporteigenschaften für Protonen und Wasser. PhD thesis. Univ. Stuttgart. 177 pp.

Israelachvili JN, 1992, Intermolecular and Surface Forces.

10.1063/1.476698

10.1021/jp973018d

10.1063/1.479307

10.1021/jp011058i

10.1021/jp002983s

10.1063/1.1423662

Paul R, Paddison SJ. 2001. InAdvances in Materials Theory and Modeling-Bridging Over Multiple-Length and Time Scales, ed. V Bulatov, L Colombo, F Cleri, LJ Lewis, N Mousseau, pp. AA7.16.1–7.16.7. Warrendale, PA: Mater. Res.Soc.

10.1063/1.1405851

Paddison SJ, Paul R. 2003.Solid State Ionics. Submitted

10.1063/1.1748233

10.1016/S0006-3495(91)82192-0

10.1016/S0006-3495(92)81585-0

10.1016/S0006-3495(93)81389-4

10.1021/bi00170a004

10.1016/0009-2614(95)00905-J

10.1016/0167-7322(95)92828-Y

10.1021/cm950192a

Kreuer KD. 2000.Solid State Ionics136–137:149–60

10.1021/j100016a003

10.1063/1.469654

10.1126/science.275.5301.817

10.1038/17579

10.1088/0953-8984/12/8A/317

Paddison SJ, Pratt LR, Zawodzinski TAJr , Reagor DW. 1998.Fluid Phase Equilibria150–151:235–43

Paddison SJ, Zawodzinski TAJr . 1998.Solid State Ionics113–115:333–40

Paddison SJ, 1999, J. New Mater. Electrochem. Syst., 2, 183

Paddison SJ, Pratt LR, Zawodzinski TAJr . 1999. InProton Conducting Membrane Fuel Cells II, ed. S Gottesfeld, TF Fuller, pp. 99–105. Pennington, NY: Electrochem. Soc.

10.1021/jp010737q

Paddison SJ, 2001, J. New Mater. Electrochem. Syst., 4, 197

Eikerling M, 2002, J. New Mater. Electrochem. Syst., 54, 15

Paddison SJ. 2003. InHandbook of Fuel Cell–Fundamentals, Technology and Applications, ed. W Vielstich, H Gasteiger, A Lamm, pp. Cambridge, UK: Wiley & Sons. Vol. 3. In press

Paddison SJ. 2003.Solid State Ionics. Submitted

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. 1998.Gaussian 98(Revision A.9) Pittsburgh, PA: Gaussian

10.1002/jcc.540030212

10.1007/BF00533485

10.1063/1.464913

10.1002/jcc.540110311

10.1002/(SICI)1097-461X(1997)64:1<121::AID-QUA12>3.3.CO;2-K

10.1021/jp993625w

10.1021/jp004082p

Gottesfeld S, Zawodzinski TA. 1998. InAdvances in Electrochemical Science and Engineering, ed. RC Alkire, H Gerischer, DM Kolb, CW Tobias, 5:197. Zurich: VCH

Paddison SJ, 2003, J. Phys. Chem. B.

10.1016/S0009-2614(02)01733-5

Paddison SJ, 2003, Mol. Phys.

10.1107/S0567740873005765

Cappadonia M, Erning JW, Saberi-Niaki SM, Stimming U. 1995.Solid State Ionics77:65–69

10.1021/i160040a003

10.1149/1.2096303

10.1149/1.2086573

10.1016/S0376-7388(00)83352-9

10.1016/0009-2509(94)00205-3

10.1021/jp972288t

10.1021/jp003182s

10.1016/S0022-0728(00)00368-5

10.1016/S0009-2614(00)00206-2

10.1002/aic.690440106

Paddison SJ, Paul R, Zawodzinski TAJr . 1999. InProton Conducting Membrane Fuel Cells II, ed. S Gottesfeld, TF Fuller, 98–27:106–20. Pennington, NJ: Electrochem. Soc. Proc. Ser.

10.1149/1.1393243

10.1063/1.1405850

Paddison SJ, Paul R, Pivovar BS. 2001. InDirect Methanol Fuel Cells, ed. S Narayanan, S Gottesfeld, TA Zawodzinski, 01–014:8–13. Pennington, NJ: Electrochem. Soc. Proc. Ser.

Paddison SJ, Paul R, Kreuer KD, Zawodzinski TAJr . 2001. InDirect Methanol Fuel Cells, ed. S Narayanan, S Gottesfeld, TA Zawodzinski, 01–04:29–33. Pennington, NJ: Electrochem. Soc. Proc. Ser.

10.1039/b109791a

Paddison SJ, Paul R. 2002.Phys. Chem. Chem. Phys. 4:1158–63