Proteomic Profile of the Bacterium Sinorhizobium meliloti Depends on Its Life Form and Host Plant Species
Tóm tắt
Abstract—The importance of root nodule bacteria in biotechnology is determined by their distinctive feature: symbiotic nitrogen fixation resulting in the production of organic nitrogen-containing compounds. While interacting with host legume plants, the cells of these bacteria undergo global changes at all levels of expression of genetic information leading to the formation in root nodules of so-called bacteroids functioning as nitrogen fixation factories. The molecular mechanisms underlying plant-microbial symbiosis are actively investigated, and one of the most interesting and poorly studied aspects of this problem is the species-specificity of interaction between root nodule bacteria and host plants. In this work we have performed the proteomic analysis of the Sinorhizobium meliloti bacteroids isolated from two legume species: alfalfa (Medicago sativa L.) and yellow sweet clover (Melilotus officinalis L.). It has been shown that the S. meliloti bacteroids produce a lot of proteins (many of them associated with symbiosis) in a host-specific manner, i.e., only in certain host plant species. It has been demonstrated for the first time that the levels of expression in bacteroids of the genes encoding the ExoZ and MscL proteins responsible for the synthesis of surface lipopolysaccharides and formation of a large conductance mechanosensitive channel, respectively, depend on a host plant species that confirms the results of proteomic analysis. Overall, our data show that the regulation of bacteroid development by the host plant has species-specific features.
Tài liệu tham khảo
Andrews M., Andrews M.E. 2017. Specificity in legume–rhizobia symbioses. Int. J. Mol. Sci. 18, e705.
Wang D., Yang S., Tang F., Zhu H. 2012. Symbiosis specificity in the legume: Rhizobial mutualism. Cell. Microbiol. 14, 334–342.
Gourion B., Berrabah F., Ratet P., Stacey G. 2015. Rhizobium–legume symbioses: The crucial role of plant immunity. Trends Plant Sci. 20, 186–194.
Sprent J.I. 2009. Legume Nodulation: A Global Perspective. Ed. Sprent J.I. Chichester UK: Wiley-Blackwell.
Rose C.M., Venkateshwaran M., Volkening J.D., Grimsrud P.A., Maeda J., Bailey D.J., Park K., Howes-Podoll M., den Os D., Yeun L.H., Westphall M.S., Sussman M.R., Ané J.-M., Coon J.J. 2012. Rapid phosphoproteomic and transcriptomic changes in the rhizobia–legume symbiosis. Mol. Cell. Proteomics. 11, 724–744.
Marx H., Minogue C.E., Jayaraman D., Richards A.L., Kwiecien N.W., Siahpirani A.F., Rajasekar S., Maeda J., Garcia K., Del Valle-Echevarria A.R., Volkening J.D., Westphall M.S., Roy S., Sussman M.R., Ané J.-M., Coon J.J. 2016. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat. Biotechnol. 34, 1198–1205.
Oldroyd G.E.D., Murray J.D., Poole P.S., Downie J.A. 2011. The rules of engagement in the legume–rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144.
Debellé F., Maillet F., Vasse J., Rosenberg C., de Billy F., Truchet G., Dénarié J., Ausubel F.M. 1988. Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: Genetic basis of R. meliloti dominance. J. Bacteriol. 170, 5718–5727.
Spaink H.P., Weinman J., Djordjevic M.A., Wijffelman C.A., Okker R.J., Lugtenberg B.J. 1989. Genetic analysis and cellular localization of the Rhizobium host specificity-determining NodE protein. EMBO J. 8, 2811–2818.
McIver J., Djordjevic M.A., Weinman J.J., Bender G.L., Rolfe B.G. 1989. Extension of host range of Rhizobium leguminosarum bv. trifolii caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules. Mol. Plant Microbe Interact. 2, 97–106.
Koch M., Delmotte N., Rehrauer H., Vorholt J.A., Pessi G., Hennecke H. 2010. Rhizobial adaptation to hosts, a new facet in the legume root–nodule symbiosis. Mol. Plant. Microbe. Interact. 23, 784–790.
Ampe F., Kiss E., Sabourdy F., Batut J. 2003. Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol. 4, R15.
Becker A., Berges H., Krol E., Bruand C., Ruberg S., Capela D., Lauber E., Meilhoc E., Ampe F., de Bruijn F.J., Fourment J., Francez-Charlot A., Kahn D., Kuster H., Liebe C., et al. 2004. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol. Plant. Microbe Interact. 17, 292–303.
Li Y., Tian C.F., Chen W.F., Wang L., Sui X.H., Chen W.X. 2013. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS One. 8, e0070531.
Larrainzar E., Wienkoop S. 2017. A proteomic view on the role of legume symbiotic interactions. Front. Plant Sci. 8, e1267.
Rumyantseva M.L., Simarov B.V., Onishchuk O.P., Andronov E.E., Chizhevskaya E.P., Belova V.S., Kurchak O.N., Muntyan A.N., Rumyantseva T.B. 2011. Biologicheskoe raznoobrazie kluben’kovykh bakterii v ekosistemakh i agrotsenozakh. Teoreticheskie osnovy i metody (Biological Diversity of Rhizobia in Ecosystems and Agrocenoses: Theoretical Foundations and Methods). Rumyantseva M.L., Simarov B.V., Eds. St. Petersburg: VNIISKhM.
Vedam V., Kannenberg E., Datta A., Brown D., Haynes-Gann J.G., Sherrier D.J., Carlson R.W. 2006. The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. J. Bacteriol. 188, 2126–2133.
Antonets K.S., Volkov K.V., Maltseva A.L., Arshakian L.M., Galkin A.P., Nizhnikov A.A. 2016. Proteomic analysis of Escherichia coli protein fractions resistant to solubilization by ionic detergents. Biochemistry (Moscow). 81 (1), 34–46.
Rinaudi-Marron L.V., González J.E. 2013. Role of quorum sensing in the Sinorhizobium meliloti–alfalfa symbiosis. Mol. Microbial. Ecol. Rhizosphere. 1, 535–540.
Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25, 402–408.
Blanca-Ordóñez H., Oliva-García J.J., Pérez-Mendoza D., Soto M.J., Olivares J., Sanjuán J., Nogales J. 2010. pSymA-dependent mobilization of the Sinorhizobium meliloti pSymB megaplasmid. J. Bacteriol. 192, 6309–6312.
Mendrygal K.E., González J.E. 2000. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 182, 599–606.
Lynch D., O’Brien J., Welch T., Clarke P., Cuív P.O., Crosa J.H., O’Connell M. 2001. Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J. Bacteriol. 183, 2576–2585.
Skorupska A., Janczarek M., Marczak M., Mazur A., Król J. 2006. Rhizobial exopolysaccharides: Genetic control and symbiotic functions. Microb. Cell Fact. 5, e7.
Booth I.R. 2014. Bacterial mechanosensitive channels: Progress towards an understanding of their roles in cell physiology. Curr. Opin. Microbiol. 18, 16–22.