Phân Tích Proteomic Các Phản Ứng Đối Với Căng Thẳng Muối Ở Chồi Lúa

Journal of Plant Biology - Tập 54 - Trang 384-395 - 2011
Xiao-Juan Li1,2, Ming-Feng Yang1, Yi Zhu3, Yu Liang1, Shi-Hua Shen1
1Institute of Botany, the Chinese Academy of Sciences, Beijing, People’s Republic of China
2College of Life Sciences, Agriculture University of Hebei, Baoding, People’s Republic of China
3College of Food Science and Nutritional Engineering, China Agriculture University, Beijing, People’s Republic of China

Tóm tắt

Để hiểu rõ hơn về cơ chế mà cây lúa (Oryza sativa L.) phản ứng với áp lực muối, chúng tôi đã thực hiện phân tích proteomic trên cây lúa dưới tác động của 250 mM NaCl bằng cách sử dụng chồi của các cây con mới nảy mầm 3 ngày tuổi. Sự thay đổi của các mẫu protein đã được theo dõi bằng điện di gel hai chiều. Trong số 57 điểm protein cho thấy sự thay đổi về độ phong phú trong phản ứng với căng thẳng muối, 52 điểm đã được xác định bằng phương pháp phổ khối lượng hấp dẫn/hỗ trợ bằng laser tia lửa và thời gian bay. Các protein được xác định được phân loại thành tám danh mục chức năng. Một số protein mới phản ứng với căng thẳng muối, bao gồm chất ức chế tổng hợp protein I, yếu tố ổn định/lắp ráp quang hợp hệ II HCF136, protein tương tự yếu tố kích hoạt và cycloartenol-C24-methyltransferase đã được tăng cường dưới áp lực muối. Để tìm hiểu cơ chế phân tử khác biệt và tương đồng giữa căng thẳng muối và các stress khác, sự điều chỉnh của một số protein phản ứng với muối dưới các căng thẳngabiotic khác (lạnh và mất nước) và việc áp dụng axit abscisic cũng đã được phân tích. Cơ chế phân tử khả thi của các cây con lúa trong phản ứng đối với độ mặn và các stress khác đã được thảo luận.

Từ khóa

#lúa #căng thẳng muối #proteomic #điện di gel hai chiều #axit abscisic

Tài liệu tham khảo

Ball MC, Chow WS, Anderson JM (1987) Salinity-induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide. Aust J Plant Physiol 14:351–361 Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 4:136–142 Chen X, Zhang W, Xie YJ, Lu W, Zhang RX (2007) Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Sci 173:397–407 Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X et al (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114 Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177 Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem 263:8735–8739 Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121 Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. J Exp Bot 55:1115–1123 Groth G, Strotmann H (1999) New results about structure, function and regulation of the chloroplast ATP synthase (CF0CF1). Physiol Plant 106:142–148 He Z, Li L, Luan S (2004) Immunophilins and parvulins superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267 Health RL, Packer G (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichemtry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198 Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403 Iwasaki Y, Komano M, Ishikawa A, Sasaki T, Asahi T (1995) Molecular cloning and characterization of cDNA for a rice protein that contains seven repetitive segments of the Trp-Asp forty-amino-acid repeat (WD-40 repeat). Plant Cell Physiol 36:505–510 Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell-death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970 Jorrín JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962 Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K et al (2001) Gene expression profile during the initial phase of salt stress in rice. Plant Cell 13:889–905 Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078 Ledford HK, Baroli I, Shin JW, Fischer BB, Eggen RI, Niyogi KK (2004) Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol Gen Genomics 272:470–479 Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY et al (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11 Li X, Yang M, Chen H, Qu L, Chen F, Shen S (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophys Acta-Proteins and Proteomics 1804:929–940 Ludlam AV, Moore BA, Xu Z (2004) The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc Natl Acad Sci U S A 101:13436–13441 Meurer J, Plucken H, Kowallik KV, Westhoff P (1998) A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J 17:5286–5297 Moons A, Bauw G, Prinsen E, Van Montagu M, van Der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107:177–186 Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Gen Genomics 284:121–136 Pellinen RI, Korhonen MS, Tauriainen AA, Palva ET, Kangasjarvi J (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol 130:549–560 Plucken H, Muller B, Grohmann D, Westhoff P, Eichacker LA (2002) The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett 532:85–90 Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767 Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize. Plant Physiol 117:1253–1263 Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11:34–48 Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76:199–219 Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P et al (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72 Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T et al (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291 Shen S, Jing Y, Kuang T (2003a) Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics 3:527–535 Shen S, Sharma A, Komatsu S (2003b) Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull 26:129–136 Sitbon F, Jonsson L (2001) Sterol composition and growth of transgenic tobacco plants expressing type-1 and type-2 sterol methyltransferases. Planta 212:568–572 Stirpe F, Barbieri L, Gorini P, Valbonesi P, Bolognesi A, Polito L (1996) Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett 382:309–312 Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H et al (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818 Veena RVS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395 Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14 Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell Supplement 14:165–183 Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244 Yan S, Zhang Q, Tang Z, Su W, Sun W (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496 Yang G, Komatsu S (2004) Microarray and proteomic analysis of brassinosteroid- and gibberellin-regulated gene and protein expression in rice. Geno Prot Bioinfo 2:77–83 Zang X, Komatsu S (2007) A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry 68:426–437 Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406 Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273 Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445