Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agrawal, 2003, RNA interference: biology, mechanism, and applications, Microbiol. Mol. Biol. Rev., 67, 657, 10.1128/MMBR.67.4.657-685.2003
Altmann, 2009, The state of the art of chemical biology, ChemBioChem, 10, 16, 10.1002/cbic.200800758
Amm, 2014, Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system, Biochim. Biophys. Acta, 1843, 182, 10.1016/j.bbamcr.2013.06.031
Argiropoulos, 2007, Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis, Genes Dev., 21, 2845, 10.1101/gad.1619407
Backus, 2016, Proteome-wide covalent ligand discovery in native biological systems, Nature, 534, 570, 10.1038/nature18002
BasuRay, 2019, Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis, Proc. Natl. Acad. Sci. U.S.A., 116, 9521, 10.1073/pnas.1901974116
Boija, 2018, Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains, Cell, 175, 1842, 10.1016/j.cell.2018.10.042
Bondeson, 2015, Catalytic in vivo protein knockdown by small-molecule PROTACs, Nat. Chem. Biol., 11, 611, 10.1038/nchembio.1858
Bondeson, 2018, Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead, Cell Chem. Biol., 25, 78, 10.1016/j.chembiol.2017.09.010
Botstein, 2010, Technological innovation leads to fundamental understanding in cell biology, Mol. Biol. Cell, 21, 3791, 10.1091/mbc.e10-04-0366
Brand, 2019, Locus-Specific Knock-In of a Degradable Tag for Target Validation Studies, 105
Brien, 2018, Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma, eLife, 7, e41305, 10.7554/eLife.41305
Brownell, 2010, Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ, Mol. Cell, 37, 102, 10.1016/j.molcel.2009.12.024
Brunetti, 2018, Mutant NPM1 Maintains the Leukemic State through HOX Expression, Cancer Cell, 34, 499, 10.1016/j.ccell.2018.08.005
Buckley, 2012, Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction, J. Am. Chem. Soc., 134, 4465, 10.1021/ja209924v
Buckley, 2015, HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins, ACS Chem. Biol., 10, 1831, 10.1021/acschembio.5b00442
Burslem, 2017, Small-Molecule Modulation of Protein Homeostasis, Chem. Rev., 117, 11269, 10.1021/acs.chemrev.7b00077
Burslem, 2017, Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions, Chem. Sci. (Camb.), 8, 4188, 10.1039/C7SC00388A
Burslem, 2018, Efficient Synthesis of Immunomodulatory Drug Analogues Enables Exploration of Structure-Degradation Relationships, ChemMedChem, 13, 1508, 10.1002/cmdc.201800271
Burslem, 2018, The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study, Cell Chem. Biol., 25, 67, 10.1016/j.chembiol.2017.09.009
Burslem, 2018, Enhancing Antiproliferative Activity and Selectivity of a FLT-3 Inhibitor by Proteolysis Targeting Chimera Conversion, J. Am. Chem. Soc., 140, 16428, 10.1021/jacs.8b10320
Burslem, 2019, Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation, Cancer Res., 79, 4744, 10.1158/0008-5472.CAN-19-1236
Carter, 2019, Target 2035: probing the human proteome, Drug Discov. Today, 24, 2111, 10.1016/j.drudis.2019.06.020
Chu, 2016, Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation, Cell Chem. Biol., 23, 453, 10.1016/j.chembiol.2016.02.016
Clackson, 1998, Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity, Proc. Natl. Acad. Sci. USA, 95, 10437, 10.1073/pnas.95.18.10437
Clift, 2017, A Method for the Acute and Rapid Degradation of Endogenous Proteins, Cell, 171, 1692, 10.1016/j.cell.2017.10.033
Corbin, 2011, Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity, J. Clin. Invest., 121, 396, 10.1172/JCI35721
Crew, 2018, Identification and Characterization of Von Hippel-Lindau-Recruiting Proteolysis Targeting Chimeras (PROTACs) of TANK-Binding Kinase 1, J. Med. Chem., 61, 583, 10.1021/acs.jmedchem.7b00635
Cromm, 2018, Addressing Kinase-Independent Functions of Fak via PROTAC-Mediated Degradation, J. Am. Chem. Soc., 140, 17019, 10.1021/jacs.8b08008
Douglass, 2013, A comprehensive mathematical model for three-body binding equilibria, J. Am. Chem. Soc., 135, 6092, 10.1021/ja311795d
Druker, 2009, Perspectives on the development of imatinib and the future of cancer research, Nat. Med., 15, 1149, 10.1038/nm1009-1149
Editorial, 2000, The importance of technological advances, Nat. Cell Biol., 2, E37, 10.1038/35004064
England, 2015, HaloTag technology: a versatile platform for biomedical applications, Bioconjug. Chem., 26, 975, 10.1021/acs.bioconjchem.5b00191
Erb, 2017, Transcription control by the ENL YEATS domain in acute leukaemia, Nature, 543, 270, 10.1038/nature21688
Farnaby, 2019, BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design, Nat. Chem. Biol., 15, 672, 10.1038/s41589-019-0294-6
Field, 2017, Selective Downregulation of JAK2 and JAK3 by an ATP-Competitive pan-JAK Inhibitor, ACS Chem. Biol., 12, 1183, 10.1021/acschembio.7b00116
Fields, 2001, The interplay of biology and technology, Proc. Natl. Acad. Sci. USA, 98, 10051, 10.1073/pnas.191380098
Fischer, 2014, Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide, Nature, 512, 49, 10.1038/nature13527
Flanagan, 2019, Targeting Nuclear Receptors with PROTAC degraders, Mol. Cell. Endocrinol., 493, 110452, 10.1016/j.mce.2019.110452
Flanagan, 2019, ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer, Cancer Research, 79, 10.1158/1538-7445.SABCS18-P5-04-18
Frost, 2016, Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition, Nat. Commun., 7, 13312, 10.1038/ncomms13312
Gadd, 2017, Structural basis of PROTAC cooperative recognition for selective protein degradation, Nat. Chem. Biol., 13, 514, 10.1038/nchembio.2329
Gechijian, 2018, Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands, Nat. Chem. Biol., 14, 405, 10.1038/s41589-018-0010-y
Grice, 2016, The recognition of ubiquitinated proteins by the proteasome, Cell. Mol. Life Sci., 73, 3497, 10.1007/s00018-016-2255-5
Grunwald, 2013, FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance, Int. J. Hematol., 97, 683, 10.1007/s12185-013-1334-8
Gustafson, 2015, Small-Molecule-Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging, Angew. Chem. Int. Ed. Engl., 54, 9659, 10.1002/anie.201503720
Han, 2019, Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer, J. Med. Chem., 62, 941, 10.1021/acs.jmedchem.8b01631
Hebbard, 2010, Maternal embryonic leucine zipper kinase is upregulated and required in mammary tumor-initiating cells in vivo, Cancer Res., 70, 8863, 10.1158/0008-5472.CAN-10-1295
Hellerschmied, 2019, Protein Folding State-dependent Sorting at the Golgi Apparatus, Mol. Biol. Cell, 30, 2296, 10.1091/mbc.E19-01-0069
Hines, 2019, MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53, Cancer Res., 79, 251, 10.1158/0008-5472.CAN-18-2918
Howell, 2004, The use of selective estrogen receptor modulators and selective estrogen receptor down-regulators in breast cancer, Best Pract. Res. Clin. Endocrinol. Metab., 18, 47, 10.1016/j.beem.2003.08.002
Hu, 2019, Discovery of ERD-308 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Estrogen Receptor (ER), J. Med. Chem., 62, 1420, 10.1021/acs.jmedchem.8b01572
Huang, 2017, MELK is not necessary for the proliferation of basal-like breast cancer cells, eLife, 6, e26693, 10.7554/eLife.26693
Huang, 2018, A Chemoproteomic Approach to Query the Degradable Kinome Using a Multi-kinase Degrader, Cell Chem. Biol., 25, 88, 10.1016/j.chembiol.2017.10.005
Iadanza, 2018, A new era for understanding amyloid structures and disease, Nat. Rev. Mol. Cell Biol., 19, 755, 10.1038/s41580-018-0060-8
Ishoey, 2018, Translation Termination Factor GSPT1 Is a Phenotypically Relevant Off-Target of Heterobifunctional Phthalimide Degraders, ACS Chem. Biol., 13, 553, 10.1021/acschembio.7b00969
Itoh, 2010, Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins, J. Am. Chem. Soc., 132, 5820, 10.1021/ja100691p
Jacobsen, 2009, Transcriptional effects of transfection: the potential for misinterpretation of gene expression data generated from transiently transfected cells, Biotechniques, 47, 617, 10.2144/000113132
Jain, 2019, Targetable genetic alterations of TCF4 (E2-2) drive immunoglobulin expression in diffuse large B cell lymphoma, Sci. Transl. Med., 11, eaav5599, 10.1126/scitranslmed.aav5599
Kim, 2013, From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes, Nat. Prod. Rep., 30, 600, 10.1039/c3np20126k
Kleiger, 2014, Perilous journey: a tour of the ubiquitin-proteasome system, Trends Cell Biol., 24, 352, 10.1016/j.tcb.2013.12.003
Komander, 2012, The ubiquitin code, Annu. Rev. Biochem., 81, 203, 10.1146/annurev-biochem-060310-170328
Krönke, 2014, Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells, Science, 343, 301, 10.1126/science.1244851
Lai, 2016, Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL, Angew. Chem. Int. Ed. Engl., 55, 807, 10.1002/anie.201507634
Leonetti, 2016, A scalable strategy for high-throughput GFP tagging of endogenous human proteins, Proc. Natl. Acad. Sci. USA, 113, E3501, 10.1073/pnas.1606731113
Los, 2008, HaloTag: a novel protein labeling technology for cell imaging and protein analysis, ACS Chem. Biol., 3, 373, 10.1021/cb800025k
Lu, 2015, Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4, Chem. Biol., 22, 755, 10.1016/j.chembiol.2015.05.009
Martin, 2019, PHOTACs Enable Optical Control of Protein Degradation, ChemRxiv
Matyskiela, 2016, A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase, Nature, 535, 252, 10.1038/nature18611
McDonald, 2017, Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening, Cell, 170, 577, 10.1016/j.cell.2017.07.005
Michel, 2018, A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation, Nat. Cell Biol., 20, 1410, 10.1038/s41556-018-0221-1
Nabet, 2018, The dTAG system for immediate and target-specific protein degradation, Nat. Chem. Biol., 14, 431, 10.1038/s41589-018-0021-8
Neklesa, 2011, Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins, Nat. Chem. Biol., 7, 538, 10.1038/nchembio.597
Neklesa, 2019, ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer, J. Clin. Oncol., 37, 259, 10.1200/JCO.2019.37.7_suppl.259
Nowak, 2018, Plasticity in binding confers selectivity in ligand-induced protein degradation, Nat. Chem. Biol., 14, 706, 10.1038/s41589-018-0055-y
Nunes, 2019, Targeting IRAK4 for Degradation with PROTACs, ACS Med. Chem. Lett., 10, 1081, 10.1021/acsmedchemlett.9b00219
Omenn, 2018, Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project, J. Proteome Res., 17, 4031, 10.1021/acs.jproteome.8b00441
Ottis, 2017, Assessing Different E3 Ligases for Small Molecule Induced Protein Ubiquitination and Degradation, ACS Chem. Biol., 12, 2570, 10.1021/acschembio.7b00485
Ottis, 2019, Cellular Resistance Mechanisms to Targeted Protein Degradation Converge Toward Impairment of the Engaged Ubiquitin Transfer Pathway, ACS Chem. Biol., 14, 2215
Palmer, 2016, Structure-Guided Design of IACS-9571, a Selective High-Affinity Dual TRIM24-BRPF1 Bromodomain Inhibitor, J. Med. Chem., 59, 1440, 10.1021/acs.jmedchem.5b00405
Parker, 2017, Ligand and Target Discovery by Fragment-Based Screening in Human Cells, Cell, 168, 527, 10.1016/j.cell.2016.12.029
Patel, 2018, Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment, Pharmacol. Ther., 186, 1, 10.1016/j.pharmthera.2017.12.012
Piya, 2019, BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment, J. Clin. Invest., 129, 1878, 10.1172/JCI120654
Popow, 2019, Highly Selective PTK2 Proteolysis Targeting Chimeras to Probe Focal Adhesion Kinase Scaffolding Functions, J. Med. Chem., 62, 2508, 10.1021/acs.jmedchem.8b01826
Pratz, 2009, A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response, Blood, 113, 3938, 10.1182/blood-2008-09-177030
Raina, 2014, Targeted protein destabilization reveals an estrogen-mediated ER stress response, Nat. Chem. Biol., 10, 957, 10.1038/nchembio.1638
Raina, 2016, PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer, Proc. Natl. Acad. Sci. USA, 113, 7124, 10.1073/pnas.1521738113
Rathkopf, 2013, Androgen receptor antagonists in castration-resistant prostate cancer, Cancer J., 19, 43, 10.1097/PPO.0b013e318282635a
Remillard, 2017, Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands, Angew. Chem. Int. Ed. Engl., 56, 5738, 10.1002/anie.201611281
Riching, 2018, Quantitative Live-Cell Kinetic Degradation and Mechanistic Profiling of PROTAC Mode of Action, ACS Chem. Biol., 13, 2758, 10.1021/acschembio.8b00692
Roy, 2019, SPR-Measured Dissociation Kinetics of PROTAC Ternary Complexes Influence Target Degradation Rate, ACS Chem. Biol., 14, 361, 10.1021/acschembio.9b00092
Saenz, 2017, Novel BET protein proteolysis targeting chimera (BET-PROTAC) exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm (MPN) secondary (s) AML cells, Leukemia, 31, 1951, 10.1038/leu.2016.393
Saenz, 2019, Targeting nuclear β-catenin as therapy for post-myeloproliferative neoplasm secondary AML, Leukemia, 33, 1373, 10.1038/s41375-018-0334-3
Sakamoto, 2001, Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation, Proc. Natl. Acad. Sci. USA, 98, 8554, 10.1073/pnas.141230798
Salami, 2018, Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance, Commun. Biol, 1, 100, 10.1038/s42003-018-0105-8
Savitski, 2018, Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis, Cell, 173, 260, 10.1016/j.cell.2018.02.030
Schneekloth, 2004, Chemical genetic control of protein levels: selective in vivo targeted degradation, J. Am. Chem. Soc., 126, 3748, 10.1021/ja039025z
Schneekloth, 2008, Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics, Bioorg. Med. Chem. Lett., 18, 5904, 10.1016/j.bmcl.2008.07.114
Sekine, 2008, Small molecules destabilize cIAP1 by activating auto-ubiquitylation, J. Biol. Chem., 283, 8961, 10.1074/jbc.M709525200
Serebrenik, 2018, Targeted protein unfolding uncovers a Golgi-specific transcriptional stress response, Mol. Biol. Cell, 29, 1284, 10.1091/mbc.E17-11-0693
Setten, 2019, The current state and future directions of RNAi-based therapeutics, Nat. Rev. Drug Discov., 18, 421, 10.1038/s41573-019-0017-4
Shibata, 2017, Development of protein degradation inducers of oncogenic BCR-ABL protein by conjugation of ABL kinase inhibitors and IAP ligands, Cancer Sci., 108, 1657, 10.1111/cas.13284
Shibata, 2019, Development of a Potent Protein Degrader against Oncogenic BCR-ABL Protein, Chem. Pharm. Bull. (Tokyo), 67, 165, 10.1248/cpb.c18-00703
Silva, 2019, Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models, eLife, 8, e45457, 10.7554/eLife.45457
Sima, 2019, Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication, Cell, 176, 816, 10.1016/j.cell.2018.11.036
Smagris, 2015, Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis, Hepatology, 61, 108, 10.1002/hep.27242
Smith, 2011, Road to ruin: targeting proteins for degradation in the endoplasmic reticulum, Science, 334, 1086, 10.1126/science.1209235
Smith, 2012, Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia, Nature, 485, 260, 10.1038/nature11016
Smith, 2019, Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase, Nat. Commun., 10, 131, 10.1038/s41467-018-08027-7
Spradlin, 2019, Harnessing the anti-cancer natural product nimbolide for targeted protein degradation, Nat. Chem. Biol., 15, 747, 10.1038/s41589-019-0304-8
Sun, 2018, BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells, Leukemia, 32, 343, 10.1038/leu.2017.207
Sun, 2019, A chemical approach for global protein knockdown from mice to non-human primates, Cell Discov., 5, 10, 10.1038/s41421-018-0079-1
Tomoshige, 2015, Degradation of HaloTag-fused nuclear proteins using bestatin-HaloTag ligand hybrid molecules, Org. Biomol. Chem., 13, 9746, 10.1039/C5OB01395J
Tomoshige, 2016, Efficient protein knockdown of HaloTag-fused proteins using hybrid molecules consisting of IAP antagonist and HaloTag ligand, Bioorg. Med. Chem., 24, 3144, 10.1016/j.bmc.2016.05.035
Touré, 2016, Toward the Validation of Maternal Embryonic Leucine Zipper Kinase: Discovery, Optimization of Highly Potent and Selective Inhibitors, and Preliminary Biology Insight, J. Med. Chem., 59, 4711, 10.1021/acs.jmedchem.6b00052
Tovell, 2019, Rapid and Reversible Knockdown of Endogenously Tagged Endosomal Proteins via an Optimized HaloPROTAC Degrader, ACS Chem. Biol., 14, 882, 10.1021/acschembio.8b01016
van Steensel, 2015, A short guide to technology development in cell biology, J. Cell Biol., 208, 655, 10.1083/jcb.201502006
Visweshwaran, 2018, The trimeric coiled-coil HSBP1 protein promotes WASH complex assembly at centrosomes, EMBO J., 37, 97706, 10.15252/embj.201797706
Ward, 2019, Covalent Ligand Screening Uncovers an RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications, ACS Chem. Biol., 14, 2430, 10.1021/acschembio.8b01083
Wardell, 2011, The turnover of estrogen receptor α by the selective estrogen receptor degrader (SERD) fulvestrant is a saturable process that is not required for antagonist efficacy, Biochem. Pharmacol., 82, 122, 10.1016/j.bcp.2011.03.031
Weissmiller, 2019, Inhibition of MYC by the SMARCB1 tumor suppressor, Nat. Commun., 10, 2014, 10.1038/s41467-019-10022-5
Winter, 2015, DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation, Science, 348, 1376, 10.1126/science.aab1433
Yang, 2019, Small-molecule PROTAC degraders of the Bromodomain and Extra Terminal (BET) proteins - A review, Drug Discov. Today. Technol., 31, 43, 10.1016/j.ddtec.2019.04.001
Yau, 2016, The increasing complexity of the ubiquitin code, Nat. Cell Biol., 18, 579, 10.1038/ncb3358
Zarrinkar, 2009, AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML), Blood, 114, 2984, 10.1182/blood-2009-05-222034
Zhang, 2018, Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma, Leukemia, 32, 2224, 10.1038/s41375-018-0044-x
Zhang, 2019, Acquired Resistance to BET-PROTACs (Proteolysis Targeting Chimeras) Caused by Genomic Alterations in Core Components of E3 ligase Complexes, Mol. Cancer Ther., 18, 1302, 10.1158/1535-7163.MCT-18-1129
Zhang, 2019, Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16, Nat. Chem. Biol., 15, 737, 10.1038/s41589-019-0279-5