Proteoglycan degradation by the ADAMTS family of proteinases
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease - Tập 1812 - Trang 1616-1629 - 2011
Tài liệu tham khảo
Kuno, 1997, Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene, J. Biol. Chem., 272, 556, 10.1074/jbc.272.1.556
Schaefer, 2008, Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction, J. Biol. Chem., 283, 21305, 10.1074/jbc.R800020200
Kalamajski, 2010, The role of small leucine-rich proteoglycans in collagen fibrillogenesis, Matrix Biol., 29, 248, 10.1016/j.matbio.2010.01.001
Heinegard, 2009, Proteoglycans and more—from molecules to biology, Int. J. Exp. Pathol., 90, 575, 10.1111/j.1365-2613.2009.00695.x
Roughley, 2006, The structure and function of cartilage proteoglycans, Eur. Cell. Mater., 12, 92, 10.22203/eCM.v012a11
Iozzo, 1996, Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function, FASEB J., 10, 598, 10.1096/fasebj.10.5.8621059
Iozzo, 1998, Matrix proteoglycans: from molecular design to cellular function, Annu. Rev. Biochem., 67, 609, 10.1146/annurev.biochem.67.1.609
Jones, 2005, ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis, Arthritis Res. Ther., 7, 160, 10.1186/ar1783
Nagase, 2003, Aggrecanases and cartilage matrix degradation, Arthritis Res. Ther., 5, 94, 10.1186/ar630
Porter, 2005, The ADAMTS metalloproteinases, Biochem. J., 386, 15, 10.1042/BJ20040424
Apte, 2009, A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms, J. Biol. Chem., 284, 31493, 10.1074/jbc.R109.052340
Tortorella, 2009, A review of the ADAMTS family, pharmaceutical targets of the future, Curr. Pharm. Des., 15, 2359, 10.2174/138161209788682433
Gomis-Ruth, 2009, Catalytic domain architecture of metzincin metalloproteases, J. Biol. Chem., 284, 15353, 10.1074/jbc.R800069200
Gerhardt, 2007, Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains, J. Mol. Biol., 373, 891, 10.1016/j.jmb.2007.07.047
Mosyak, 2008, Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5, Protein Sci., 17, 16, 10.1110/ps.073287008
Hurskainen, 1999, ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family, J. Biol. Chem., 274, 25555, 10.1074/jbc.274.36.25555
Seidah, 2008, The activation and physiological functions of the proprotein convertases, Int. J. Biochem. Cell Biol., 40, 1111, 10.1016/j.biocel.2008.01.030
Mayer, 2008, The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates, J. Biol. Chem., 283, 2373, 10.1074/jbc.M708763200
Longpre, 2004, Identification of prodomain determinants involved in ADAMTS-1 biosynthesis, J. Biol. Chem., 279, 33237, 10.1074/jbc.M313151200
Wang, 2004, Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network, J. Biol. Chem., 279, 15434, 10.1074/jbc.M312797200
Longpre, 2009, Characterization of proADAMTS5 processing by proprotein convertases, Int. J. Biochem. Cell Biol., 41, 1116, 10.1016/j.biocel.2008.10.008
Tortorella, 2005, ADAMTS-4 (aggrecanase-1): N-Terminal activation mechanisms, Arch. Biochem. Biophys., 444, 34, 10.1016/j.abb.2005.09.018
Malfait, 2008, Proprotein convertase activation of aggrecanases in cartilage in situ, Arch. Biochem. Biophys., 478, 43, 10.1016/j.abb.2008.07.012
Majerus, 2003, Cleavage of the ADAMTS13 propeptide is not required for protease activity, J. Biol. Chem., 278, 46,643, 10.1074/jbc.M309872200
Somerville, 2004, ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain, J. Biol. Chem., 279, 35,159, 10.1074/jbc.M402380200
Koo, 2007, Regulation of ADAMTS9 secretion and enzymatic activity by its propeptide, J. Biol. Chem., 282, 16,146, 10.1074/jbc.M610161200
Shieh, 2008, High resolution crystal structure of the catalytic domain of ADAMTS-5 (aggrecanase-2), J. Biol. Chem., 283, 1501, 10.1074/jbc.M705879200
S. Takeda, H. Takeya, S. Iwanaga, Snake venom metalloproteinases: Structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim. Biophys. Acta (in press). [Electronic publication ahead of print, PMID: 21530690].
Gendron, 2007, Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4, J. Biol. Chem., 282, 18294, 10.1074/jbc.M701523200
Fushimi, 2008, Functional differences of the catalytic and non-catalytic domains in human ADAMTS-4 and ADAMTS-5 in aggrecanolytic activity, J. Biol. Chem., 283, 6706, 10.1074/jbc.M708647200
Kashiwagi, 2004, Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing, J. Biol. Chem., 279, 10109, 10.1074/jbc.M312123200
Kuno, 2000, ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan, FEBS Lett., 478, 241, 10.1016/S0014-5793(00)01854-8
Collins-Racie, 2004, ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage, Matrix Biol., 23, 219, 10.1016/j.matbio.2004.05.004
Somerville, 2003, Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1, J. Biol. Chem., 278, 9503, 10.1074/jbc.M211009200
Zeng, 2006, Glycosaminoglycan-binding properties and aggrecanase activities of truncated ADAMTSs: comparative analyses with ADAMTS-5, -9, -16 and -18, Biochim. Biophys. Acta, 1760, 517, 10.1016/j.bbagen.2006.01.013
Rodriguez-Manzaneque, 2002, ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors, Biochem. Biophys. Res. Commun., 293, 501, 10.1016/S0006-291X(02)00254-1
Kashiwagi, 2001, TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5), J. Biol. Chem., 276, 12501, 10.1074/jbc.C000848200
Hashimoto, 2001, Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4), FEBS Lett., 494, 192, 10.1016/S0014-5793(01)02323-7
Troeberg, 2009, The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3, Matrix Biol., 28, 463, 10.1016/j.matbio.2009.07.005
Flannery, 2002, Autocatalytic cleavage of ADAMTS-4 (aggrecanase-1) reveals multiple glycosaminoglycan-binding sites, J. Biol. Chem., 277, 42775, 10.1074/jbc.M205309200
Kuno, 1998, ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region, J. Biol. Chem., 273, 13912, 10.1074/jbc.273.22.13912
Gao, 2004, J. Biol. Chem., 279, 10042, 10.1074/jbc.M312100200
Plaas, 2007, Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5-hyaluronan complexes in articular cartilages, Osteoarthr. Cartil., 15, 719, 10.1016/j.joca.2006.12.008
Rodriguez-Manzaneque, 2000, Characterization of METH-1/ADAMTS1 processing reveals two distinct active forms, J. Biol. Chem., 275, 33471, 10.1074/jbc.M002599200
Vazquez, 1999, METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity, J. Biol. Chem., 274, 23349, 10.1074/jbc.274.33.23349
Gao, 2002, Activation of the proteolytic activity of ADAMTS4 (Aggrecanase-1) by C-terminal truncation, J. Biol. Chem., 277, 11034, 10.1074/jbc.M107443200
Huber, 1986, Identification of the type IX collagen polypeptide chains. The a2(IX) polypeptide carries the chondroitin sulfate chain(s), J. Biol. Chem., 261, 5965, 10.1016/S0021-9258(17)38478-8
Brown, 1991, Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycab with additional exons, J. Cell Biol., 113, 207, 10.1083/jcb.113.1.207
Knox, 2005, Perlecan from human epithelial cells is a hybrid heparan/chondroitin/keratan sulfate proteoglycan, FEBS Lett., 579, 5019, 10.1016/j.febslet.2005.07.090
Caterson, 1990, Modulation of native chondroitin sulphate structures in tissue development and in disease, J. Cell Sci., 97, 411, 10.1242/jcs.97.3.411
Schonherr, 1991, Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells, J. Biol. Chem., 266, 17640, 10.1016/S0021-9258(19)47419-X
Bayliss, 1999, Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition, J. Biol. Chem., 274, 15892, 10.1074/jbc.274.22.15892
Brown, 1998, Human aggrecan keratan sulfate undergoes structural changes during adolescent development, J. Biol. Chem., 273, 26408, 10.1074/jbc.273.41.26408
Couchman, 2010, Transmembrane signaling proteoglycans, Annu. Rev. Cell Dev. Biol., 26, 89, 10.1146/annurev-cellbio-100109-104126
Kolset, 2004, Intracellular proteoglycans, Biochem. J., 379, 217, 10.1042/bj20031230
Pratta, 2000, Age-related changes in aggrecan glycosylation affect cleavage by aggrecanase, J. Biol. Chem., 275, 39096, 10.1074/jbc.M006201200
Tortorella, 2000, The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage, J. Biol. Chem., 275, 25791, 10.1074/jbc.M001065200
Poon, 2005, N-linked keratan sulfate in the aggrecan interglobular domain potentiates aggrecanase activity, J. Biol. Chem., 280, 23615, 10.1074/jbc.M412145200
Barry, 1992, Hyaluronan-binding region of aggrecan from pig laryngeal cartilage, Biochem. J., 286, 761, 10.1042/bj2860761
Barry, 1995, N- and O-linked keratan sulfate on the hyaluronan binding region of aggrecan from mature and immature bovine cartilage, J. Biol. Chem., 270, 20516, 10.1074/jbc.270.35.20516
Fosang, 2009, Keratan sulphate in the interglobular domain has a microstructure that is distinct from keratan sulphate elsewhere on pig aggrecan, Matrix Biol., 28, 53, 10.1016/j.matbio.2008.11.001
Yamaguchi, 2000, Lecticans: organizers of the brain extracellular matrix, Cell. Mol. Life Sci., 57, 276, 10.1007/PL00000690
Spicer, 2003, A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links, J. Biol. Chem., 278, 21083, 10.1074/jbc.M213100200
Goetinck, 1987, The tandemly repeated sequences of cartilage link protein contain the sites for interaction with hyaluronic acid, J. Cell Biol., 105, 2403, 10.1083/jcb.105.5.2403
Aspberg, 1997, The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety, Proc. Natl. Acad. Sci. U. S. A., 94, 10116, 10.1073/pnas.94.19.10116
Day, 2004, Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins, J. Biol. Chem., 279, 12511, 10.1074/jbc.M400242200
Isogai, 2002, Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks, J. Biol. Chem., 277, 4565, 10.1074/jbc.M110583200
Aspberg, 1999, Fibulin-1 is a ligand for the c-type lectin domains of aggrecan and versican, J. Biol. Chem., 274, 20444, 10.1074/jbc.274.29.20444
Olin, 2001, The proteoglycans aggrecan and versican form networks with fibulin-2 through their lectin domain binding, J. Biol. Chem., 276, 1253, 10.1074/jbc.M006783200
Fulop, 1993, Expression of alternatively spliced epidermal growth factor-like domains in aggrecans of different species, J. Biol. Chem., 268, 17377, 10.1016/S0021-9258(19)85345-0
Dours-Zimmermann, 1994, A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican, J. Biol. Chem., 269, 32992, 10.1016/S0021-9258(20)30089-2
Ito, 1995, Multiple forms of mouse PG-M, a large chondroitin sulfate proteoglycan generated by alternative splicing, J. Biol. Chem., 270, 958, 10.1074/jbc.270.2.958
Antonsson, 1989, The keratan sulfate-enriched region of bovine cartilage proteolgycan consisits of a consecutively repeated hexapeptide motif, J. Biol. Chem., 264, 16170, 10.1016/S0021-9258(18)71603-7
Brown, 1994, Oligosaccharides derived from bovine articular cartilage keratan sulfates after keratanase II digestion: implications for keratan sulfate structural fingerprinting, Biochemistry, 33, 4836, 10.1021/bi00182a012
Barry, 1994, Length variation in the keratan sulfate domain of mammalian aggrecan, Matrix Biol., 14, 323, 10.1016/0945-053X(94)90198-8
Oegema, 1975, Isolation and characterization of proteoglycans from the swarm rat chondrosarcoma, J. Biol. Chem., 250, 6151, 10.1016/S0021-9258(19)41171-X
Venn, 1985, Absence of keratan sulphate from skeletal tissues of mouse and rat, Biochem. J., 228, 443, 10.1042/bj2280443
Kresse, 1993, Small proteoglycans, Experientia, 49, 403, 10.1007/BF01923585
Neame, 1989, The primary structure of the core protein of the small, leucine-rich proteoglycan (PG I) from bovine articular cartilage, J. Biol. Chem., 264, 8653, 10.1016/S0021-9258(18)81842-7
Blaschke, 1996, Distinct isoforms of chicken decorin contain either one or two dermatan sulfate chains, J. Biol. Chem., 271, 30347, 10.1074/jbc.271.48.30347
Fisher, 1989, Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species, J. Biol. Chem., 264, 4571, 10.1016/S0021-9258(18)83781-4
Roughley, 1993, Non-proteoglycan forms of biglycan increase with age in human articular cartilage, Biochem. J., 295, 421, 10.1042/bj2950421
Grover, 1995, Expression of cell-surface proteoglycan mRNA by human articular chondrocytes, Biochem. J., 309, 963, 10.1042/bj3090963
Roughley, 1996, Presence of pro-forms of decorin and biglycan in human articular cartilage, Biochem. J., 318, 779, 10.1042/bj3180779
Roughley, 1996, Changes with age in the structure of fibromodulin in human articular cartilage, Osteoarthr. Cartil., 4, 153, 10.1016/S1063-4584(96)80011-2
Corpuz, 1996, Molecular cloning and tissue distribution of keratocan. Bovine corneal keratan sulfate proteoglycan 37A, J. Biol. Chem., 271, 9759, 10.1074/jbc.271.16.9759
Vogel, 1984, Specific inhibition of type I and type II collagen fibrillogensis by the small proteoglycans from tendon, Biochem. J., 223, 587, 10.1042/bj2230587
Merline, 2009, The matricellular functions of small leucine-rich proteoglycans (SLRPs), J. Cell Commun. Signal., 3, 323, 10.1007/s12079-009-0066-2
Iozzo, 2010, Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans, FEBS J., 277, 3864, 10.1111/j.1742-4658.2010.07797.x
Fosang, 2010, Neoepitope antibodies against MMP-cleaved and aggrecanase-cleaved aggrecan, Methods Mol. Biol., 622, 312
Hughes, 1995, Monoclonal antibodies that specifically recognise neo-epitope sequences generated by “aggrecanase” and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro, Biochem. J., 305, 799, 10.1042/bj3050799
Abbaszade, 1999, Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family, J. Biol. Chem., 274, 23443, 10.1074/jbc.274.33.23443
Tortorella, 1999, Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins, Science, 284, 1664, 10.1126/science.284.5420.1664
Rogerson, 2008, Evidence of a novel aggrecan-degrading activity in cartilage: studies of mice deficient in both ADAMTS-4 and ADAMTS-5, Arthritis Rheum., 58, 1664, 10.1002/art.23458
Matthews, 2000, Brain-enriched Hyaluronan Binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member, J. Biol. Chem., 275, 22695, 10.1074/jbc.M909764199
Sandy, 2001, Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4, J. Biol. Chem., 276, 13372, 10.1074/jbc.M009737200
Mercuri, 2000, Mutations in the interglobular domain of aggrecan alter matrix metalloproteinase and aggrecanase cleavage patterns. Evidence that matrix metalloproteinase cleavage interferes with aggrecanase activity, J. Biol. Chem., 275, 33038, 10.1074/jbc.275.42.33038
Little, 2007, Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair, J. Clin. Invest., 117, 1627, 10.1172/JCI30765
Viapiano, 2008, BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion, J. Neurooncol., 88, 261, 10.1007/s11060-008-9575-8
Hu, 2008, The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility, J. Biol. Chem., 283, 24848, 10.1074/jbc.M801433200
Mort, 2003, Use of anti-neoepitope antibodies for the analysis of degradative events in cartilage and the molecular basis for neoepitope specificity, Biochem. Soc. Symp., 107, 10.1042/bss0700107
Powell, 2007, Low molecular weight isoforms of the aggrecanases are responsible for the cytokine-induced proteolysis of aggrecan in a porcine chondrocyte culture system, Arthritis Rheum., 56, 3010, 10.1002/art.22818
Tortorella, 2002, Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4), Matrix Biol., 21, 499, 10.1016/S0945-053X(02)00069-0
Tortorella, 2000, Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4), J. Biol. Chem., 275, 18566, 10.1074/jbc.M909383199
East, 2007, ADAMTS-5 deficiency does not block aggrecanolysis at preferred cleavage sites in the chondroitin sulphate-rich region of aggrecan, J. Biol. Chem., 282, 8632, 10.1074/jbc.M605750200
Durigova, 2008, Characterization of an ADAMTS-5-mediated cleavage site in aggrecan in OSM-stimulated bovine cartilage, Osteoarthr. Cartil., 16, 1245, 10.1016/j.joca.2008.02.013
Stanton, 2005, ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro, Nature, 434, 648, 10.1038/nature03417
Glasson, 2005, Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis, Nature, 434, 644, 10.1038/nature03369
Fosang, 2010, Identifying the human aggrecanase, Osteoarthr. Cartil., 18, 1109, 10.1016/j.joca.2010.06.014
Rogerson, 2010, Cytokine-induced increases in ADAMTS-4 messenger RNA expression do not lead to increased aggrecanase activity in ADAMTS-5-deficient mice, Arthritis Rheum., 62, 3365, 10.1002/art.27661
Song, 2007, Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5, Arthritis Rheum., 56, 575, 10.1002/art.22334
Paulsson, 1987, Extended and globular protein domains in cartilage proteoglycans, Biochem. J., 245, 763, 10.1042/bj2450763
Dennis, 1990, Ultrastructural characterization of embryonic chick cartilage proteoglycan core protein and the mapping of a monoclonal antibody epitope, J. Biol. Chem., 265, 12098, 10.1016/S0021-9258(19)38511-4
Ilic, 1998, Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan, J. Biol. Chem., 273, 17451, 10.1074/jbc.273.28.17451
Sandy, 2000, The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1, Biochem. J., 351, 1, 10.1042/0264-6021:3510161
Sandy, 2001, Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo, Biochem. J., 358, 615, 10.1042/0264-6021:3580615
Struglics, 2006, Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments, Osteoarthr. Cartil., 14, 101, 10.1016/j.joca.2005.07.018
Struglics, 2006, Estimation of the identity of proteolytic aggrecan fragments using PAGE migration and Western immunoblot, Osteoarthr. Cartil., 14, 898, 10.1016/j.joca.2006.02.016
Majumdar, 2007, Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis, Arthritis Rheum., 56, 3670, 10.1002/art.23027
Glasson, 2004, Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice, Arthritis Rheum., 50, 2547, 10.1002/art.20558
Samiric, 2004, Characterisation of proteoglycans and their catabolic products in tendon and explant cultures of tendon, Matrix Biol., 23, 127, 10.1016/j.matbio.2004.03.004
Rees, 2000, Catabolism of aggrecan, decorin and biglycan in tendon, Biochem. J., 350, 181, 10.1042/0264-6021:3500181
Rees, 2009, Metabolism of proteoglycans in tendon, Scand. J. Med. Sci. Sports, 19, 470, 10.1111/j.1600-0838.2009.00938.x
Yamanishi, 2002, Expression and regulation of aggrecanase in arthritis: the role of TGF-beta, J. Immunol., 168, 1405, 10.4049/jimmunol.168.3.1405
East, 2007, ADAMTS-5 activity in synovial fibroblasts is different to chondrocytes, 576
Fosang, 2008, ADAMTS-5: the story so far, Eur. Cell. Mater., 15, 11, 10.22203/eCM.v015a02
Durigova, 2011, Involvement of ADAMTS5 and hyaluronidase in aggrecan degradation and release from OSM-stimulated cartilage, Eur. Cell. Mater., 21, 31, 10.22203/eCM.v021a03
Rees, 2009, Immunolocalisation and expression of keratocan in tendon, Osteoarthr. Cartil., 17, 276, 10.1016/j.joca.2008.07.007
Melching, 2006, The cleavage of biglycan by aggrecanases, Osteoarthr. Cartil., 14, 1147, 10.1016/j.joca.2006.05.014
Melrose, 2009, Catabolism of fibromodulin in pathologic articular cartilage: evidence of a novel role for MMP-13 and ADAMTS-4 on C-terminal processing and fragmentation, 1030
Rees, 2007, Inhibition of aggrecan turnover in short-term explant cultures of bovine tendon, Matrix Biol., 26, 280, 10.1016/j.matbio.2007.01.003
Heathfield, 2004, Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13, J. Biol. Chem., 279, 6286, 10.1074/jbc.M307765200
Monfort, 2006, Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage site, Arthritis Res. Ther., 8, R26, 10.1186/ar1873
Sztrolovics, 1999, Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism, Biochem. J., 339, 3, 10.1042/0264-6021:3390571
Geng, 2006, SLRP interaction can protect collagen fibrils from cleavage by collagenases, Matrix Biol., 25, 484, 10.1016/j.matbio.2006.08.259
Gary, 1998, BEHAB/brevican: a brain-specific lectican implicated in gliomas and glial cell motility, Curr. Opin. Neurobiol., 8, 576, 10.1016/S0959-4388(98)80083-4
Viapiano, 2006, From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology, Trends Mol. Med., 12, 488, 10.1016/j.molmed.2006.08.007
Nutt, 2001, Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican, Neuroscientist, 7, 113, 10.1177/107385840100700206
Nakamura, 2000, Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites, J. Biol. Chem., 275, 38885, 10.1074/jbc.M003875200
Espey, 2000, Ovarian expression of a disintegrin and metalloproteinase with thrombospondin motifs during ovulation in the gonadotropin-primed immature rat, Biol. Reprod., 62, 1090, 10.1095/biolreprod62.4.1090
Nakada, 2005, Human glioblastomas overexpress ADAMTS-5 that degrades brevican, Acta Neuropathol. (Berl.), 110, 239, 10.1007/s00401-005-1032-6
Viapiano, 2005, Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas, Cancer Res., 65, 6726, 10.1158/0008-5472.CAN-05-0585
Wight, 2002, Versican: a versatile extracellular matrix proteoglycan in cell biology, Curr. Opin. Cell Biol., 14, 617, 10.1016/S0955-0674(02)00375-7
Cross, 2005, The expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFbeta1 in prostate cells: relevance to the accumulation of versican, Prostate, 63, 269, 10.1002/pros.20182
Silver, 2008, The secreted metalloprotease ADAMTS20 is required for melanoblast survival, PLoS Genet., 4, e1000003, 10.1371/journal.pgen.1000003
Westling, 2004, ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein, Biochem. J., 377, 787, 10.1042/bj20030896
Kenagy, 2006, Versican degradation and vascular disease, Trends Cardiovasc. Med., 16, 209, 10.1016/j.tcm.2006.03.011
Lemire, 1999, Versican/PG-M isoforms in vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol., 19, 1630, 10.1161/01.ATV.19.7.1630
Cattaruzza, 2002, Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro, J. Biol. Chem., 277, 47626, 10.1074/jbc.M206521200
Wight, 2005, The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)!, Arterioscler. Thromb. Vasc. Biol., 25, 12, 10.1161/01.ATV.0000150043.43083.aa
Wight, 2004, Proteoglycans in atherosclerosis and restenosis: key roles for versican, Circ. Res., 94, 1158, 10.1161/01.RES.0000126921.29919.51
Salter, 2010, ADAMTS proteases: key roles in atherosclerosis?, J. Mol. Med. (Berl)., 88, 1203, 10.1007/s00109-010-0654-x
Hirose, 2001, Versican interacts with chemokines and modulates cellular responses, J. Biol. Chem., 276, 5228, 10.1074/jbc.M007542200
Kawashima, 2000, Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44, J. Biol. Chem., 275, 35448, 10.1074/jbc.M003387200
Kolodgie, 2004, The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture, Curr. Opin. Lipidol., 15, 575, 10.1097/00041433-200410000-00012
Evanko, 1999, Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol., 19, 1004, 10.1161/01.ATV.19.4.1004
Matsuura, 1996, Deposition of PG-M/versican is a major cause of human coronary restenosis after percutaneous transluminal coronary angioplasty, J. Pathol., 180, 311, 10.1002/(SICI)1096-9896(199611)180:3<311::AID-PATH657>3.0.CO;2-B
Imanaka-Yoshida, 2001, Serial extracellular matrix changes in neointimal lesions of human coronary artery after percutaneous transluminal coronary angioplasty: clinical significance of early tenascin-C expression, Virchows Arch., 439, 185, 10.1007/s004280000390
Farb, 2004, Extracellular matrix changes in stented human coronary arteries, Circulation, 110, 940, 10.1161/01.CIR.0000139337.56084.30
Kenagy, 2005, Accumulation and loss of extracellular matrix during shear stress-mediated intimal growth and regression in baboon vascular grafts, J. Histochem. Cytochem., 53, 131, 10.1177/002215540505300115
Kenagy, 2009, Cell death-associated ADAMTS4 and versican degradation in vascular tissue, J. Histochem. Cytochem., 57, 889, 10.1369/jhc.2009.953901
Jonsson-Rylander, 2005, Role of ADAMTS-1 in atherosclerosis: remodeling of carotid artery, immunohistochemistry, and proteolysis of versican, Arterioscler. Thromb. Vasc. Biol., 25, 180, 10.1161/01.ATV.0000150045.27127.37
Wagsater, 2008, ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques, Atherosclerosis, 196, 514, 10.1016/j.atherosclerosis.2007.05.018
Fu, 2011, Proteolytic cleavage of versican and involvement of ADAMTS-1 in VEGF-A/VPF-induced pathological angiogenesis, J. Histochem. Cytochem., 59, 463, 10.1369/0022155411401748
Salustri, 1999, Hyaluronan and proteoglycans in ovarian follicles, Hum. Reprod. Update, 5, 293, 10.1093/humupd/5.4.293
Russell, 2003, Hormone-regulated expression and localization of versican in the rodent ovary, Endocrinology, 144, 1020, 10.1210/en.2002-220434
Russell, 2003, Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation, J. Biol. Chem., 278, 42330, 10.1074/jbc.M300519200
Ohnishi, 2005, Functions for proteinases in the ovulatory process, Biochim. Biophys. Acta, 1751, 95, 10.1016/j.bbapap.2005.05.002
Mittaz, 2004, Adamts-1 is essential for the development and function of the urogenital system, Biol. Reprod., 70, 1096, 10.1095/biolreprod.103.023911
Shindo, 2000, ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function [see comments], J. Clin. Invest., 105, 1345, 10.1172/JCI8635
Lydon, 1995, Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities, Genes Dev., 9, 2266, 10.1101/gad.9.18.2266
Robker, 2000, Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases, Proc. Natl. Acad. Sci. U. S. A., 97, 4689, 10.1073/pnas.080073497
Brown, 2006, Requirement for ADAMTS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis, Dev. Biol., 300, 699, 10.1016/j.ydbio.2006.10.012
Shozu, 2005, ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary, J. Mol. Endocrinol., 35, 343, 10.1677/jme.1.01735
Nakamura, 2005, Expression of versican and ADAMTS1, 4, and 5 during bone development in the rat mandible and hind limb, J. Histochem. Cytochem., 53, 1553, 10.1369/jhc.5A6669.2005
McCulloch, 2009, ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression, Dev. Cell, 17, 687, 10.1016/j.devcel.2009.09.008
Enomoto, 2010, Cooperation of two ADAMTS metalloproteases in closure of the mouse palate identifies a requirement for versican proteolysis in regulating palatal mesenchyme proliferation, Development, 137, 4029, 10.1242/dev.050591
Velasco, 2011, ADAMTS5 ablation blocks murine dermal repair through CD44-mediated aggrecan accumulation and modulation of TGFbeta1 signaling, J. Biol. Chem., 286, 26016, 10.1074/jbc.M110.208694
Capehart, 2010, Proteolytic cleavage of versican during limb joint development, Anat. Rec., 293, 208, 10.1002/ar.21049
Dupuis, 2011, Altered versican cleavage in ADAMTS5 deficient mice; a novel etiology of myxomatous valve disease, Dev. Biol., 357, 152, 10.1016/j.ydbio.2011.06.041
Hattori, 2011, Pericellular versican regulates the fibroblast-myofibroblast transition. A role for ADAMTS5-mediated proteolysis, J. Biol. Chem., 286, 34298, 10.1074/jbc.M111.254938
Yang, 2003, Versican G3 domain enhances cellular adhesion and proliferation of bovine intervertebral disc cells cultured in vitro, Life Sci., 73, 3399, 10.1016/j.lfs.2003.06.018
Yang, 1999, Cell adhesion and proliferation mediated through the G1 domain of versican, J. Cell. Biochem., 72, 210, 10.1002/(SICI)1097-4644(19990201)72:2<210::AID-JCB5>3.0.CO;2-E
Zhang, 2001, Versican modulates embryonic chondrocyte morphology via the epidermal growth factor-like motifs in G3, Exp. Cell Res., 263, 33, 10.1006/excr.2000.5095
Hardingham, 1992, Proteoglycans: many forms and many functions, FASEB J., 6, 861, 10.1096/fasebj.6.3.1740236