Proteoglycan degradation by the ADAMTS family of proteinases

Heather Stanton1, James Melrose2, Christopher B. Little2, Amanda J. Fosang1
1University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
2Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Institute of Bone and Joint Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, 2065, Australia

Tài liệu tham khảo

Kuno, 1997, Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene, J. Biol. Chem., 272, 556, 10.1074/jbc.272.1.556 Schaefer, 2008, Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction, J. Biol. Chem., 283, 21305, 10.1074/jbc.R800020200 Kalamajski, 2010, The role of small leucine-rich proteoglycans in collagen fibrillogenesis, Matrix Biol., 29, 248, 10.1016/j.matbio.2010.01.001 Heinegard, 2009, Proteoglycans and more—from molecules to biology, Int. J. Exp. Pathol., 90, 575, 10.1111/j.1365-2613.2009.00695.x Roughley, 2006, The structure and function of cartilage proteoglycans, Eur. Cell. Mater., 12, 92, 10.22203/eCM.v012a11 Iozzo, 1996, Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function, FASEB J., 10, 598, 10.1096/fasebj.10.5.8621059 Iozzo, 1998, Matrix proteoglycans: from molecular design to cellular function, Annu. Rev. Biochem., 67, 609, 10.1146/annurev.biochem.67.1.609 Jones, 2005, ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis, Arthritis Res. Ther., 7, 160, 10.1186/ar1783 Nagase, 2003, Aggrecanases and cartilage matrix degradation, Arthritis Res. Ther., 5, 94, 10.1186/ar630 Porter, 2005, The ADAMTS metalloproteinases, Biochem. J., 386, 15, 10.1042/BJ20040424 Apte, 2009, A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms, J. Biol. Chem., 284, 31493, 10.1074/jbc.R109.052340 Tortorella, 2009, A review of the ADAMTS family, pharmaceutical targets of the future, Curr. Pharm. Des., 15, 2359, 10.2174/138161209788682433 Gomis-Ruth, 2009, Catalytic domain architecture of metzincin metalloproteases, J. Biol. Chem., 284, 15353, 10.1074/jbc.R800069200 Gerhardt, 2007, Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains, J. Mol. Biol., 373, 891, 10.1016/j.jmb.2007.07.047 Mosyak, 2008, Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5, Protein Sci., 17, 16, 10.1110/ps.073287008 Hurskainen, 1999, ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family, J. Biol. Chem., 274, 25555, 10.1074/jbc.274.36.25555 Seidah, 2008, The activation and physiological functions of the proprotein convertases, Int. J. Biochem. Cell Biol., 40, 1111, 10.1016/j.biocel.2008.01.030 Mayer, 2008, The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates, J. Biol. Chem., 283, 2373, 10.1074/jbc.M708763200 Longpre, 2004, Identification of prodomain determinants involved in ADAMTS-1 biosynthesis, J. Biol. Chem., 279, 33237, 10.1074/jbc.M313151200 Wang, 2004, Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network, J. Biol. Chem., 279, 15434, 10.1074/jbc.M312797200 Longpre, 2009, Characterization of proADAMTS5 processing by proprotein convertases, Int. J. Biochem. Cell Biol., 41, 1116, 10.1016/j.biocel.2008.10.008 Tortorella, 2005, ADAMTS-4 (aggrecanase-1): N-Terminal activation mechanisms, Arch. Biochem. Biophys., 444, 34, 10.1016/j.abb.2005.09.018 Malfait, 2008, Proprotein convertase activation of aggrecanases in cartilage in situ, Arch. Biochem. Biophys., 478, 43, 10.1016/j.abb.2008.07.012 Majerus, 2003, Cleavage of the ADAMTS13 propeptide is not required for protease activity, J. Biol. Chem., 278, 46,643, 10.1074/jbc.M309872200 Somerville, 2004, ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain, J. Biol. Chem., 279, 35,159, 10.1074/jbc.M402380200 Koo, 2007, Regulation of ADAMTS9 secretion and enzymatic activity by its propeptide, J. Biol. Chem., 282, 16,146, 10.1074/jbc.M610161200 Shieh, 2008, High resolution crystal structure of the catalytic domain of ADAMTS-5 (aggrecanase-2), J. Biol. Chem., 283, 1501, 10.1074/jbc.M705879200 S. Takeda, H. Takeya, S. Iwanaga, Snake venom metalloproteinases: Structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim. Biophys. Acta (in press). [Electronic publication ahead of print, PMID: 21530690]. Gendron, 2007, Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4, J. Biol. Chem., 282, 18294, 10.1074/jbc.M701523200 Fushimi, 2008, Functional differences of the catalytic and non-catalytic domains in human ADAMTS-4 and ADAMTS-5 in aggrecanolytic activity, J. Biol. Chem., 283, 6706, 10.1074/jbc.M708647200 Kashiwagi, 2004, Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing, J. Biol. Chem., 279, 10109, 10.1074/jbc.M312123200 Kuno, 2000, ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan, FEBS Lett., 478, 241, 10.1016/S0014-5793(00)01854-8 Collins-Racie, 2004, ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage, Matrix Biol., 23, 219, 10.1016/j.matbio.2004.05.004 Somerville, 2003, Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1, J. Biol. Chem., 278, 9503, 10.1074/jbc.M211009200 Zeng, 2006, Glycosaminoglycan-binding properties and aggrecanase activities of truncated ADAMTSs: comparative analyses with ADAMTS-5, -9, -16 and -18, Biochim. Biophys. Acta, 1760, 517, 10.1016/j.bbagen.2006.01.013 Rodriguez-Manzaneque, 2002, ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors, Biochem. Biophys. Res. Commun., 293, 501, 10.1016/S0006-291X(02)00254-1 Kashiwagi, 2001, TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5), J. Biol. Chem., 276, 12501, 10.1074/jbc.C000848200 Hashimoto, 2001, Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4), FEBS Lett., 494, 192, 10.1016/S0014-5793(01)02323-7 Troeberg, 2009, The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3, Matrix Biol., 28, 463, 10.1016/j.matbio.2009.07.005 Flannery, 2002, Autocatalytic cleavage of ADAMTS-4 (aggrecanase-1) reveals multiple glycosaminoglycan-binding sites, J. Biol. Chem., 277, 42775, 10.1074/jbc.M205309200 Kuno, 1998, ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region, J. Biol. Chem., 273, 13912, 10.1074/jbc.273.22.13912 Gao, 2004, J. Biol. Chem., 279, 10042, 10.1074/jbc.M312100200 Plaas, 2007, Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5-hyaluronan complexes in articular cartilages, Osteoarthr. Cartil., 15, 719, 10.1016/j.joca.2006.12.008 Rodriguez-Manzaneque, 2000, Characterization of METH-1/ADAMTS1 processing reveals two distinct active forms, J. Biol. Chem., 275, 33471, 10.1074/jbc.M002599200 Vazquez, 1999, METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity, J. Biol. Chem., 274, 23349, 10.1074/jbc.274.33.23349 Gao, 2002, Activation of the proteolytic activity of ADAMTS4 (Aggrecanase-1) by C-terminal truncation, J. Biol. Chem., 277, 11034, 10.1074/jbc.M107443200 Huber, 1986, Identification of the type IX collagen polypeptide chains. The a2(IX) polypeptide carries the chondroitin sulfate chain(s), J. Biol. Chem., 261, 5965, 10.1016/S0021-9258(17)38478-8 Brown, 1991, Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycab with additional exons, J. Cell Biol., 113, 207, 10.1083/jcb.113.1.207 Knox, 2005, Perlecan from human epithelial cells is a hybrid heparan/chondroitin/keratan sulfate proteoglycan, FEBS Lett., 579, 5019, 10.1016/j.febslet.2005.07.090 Caterson, 1990, Modulation of native chondroitin sulphate structures in tissue development and in disease, J. Cell Sci., 97, 411, 10.1242/jcs.97.3.411 Schonherr, 1991, Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells, J. Biol. Chem., 266, 17640, 10.1016/S0021-9258(19)47419-X Bayliss, 1999, Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition, J. Biol. Chem., 274, 15892, 10.1074/jbc.274.22.15892 Brown, 1998, Human aggrecan keratan sulfate undergoes structural changes during adolescent development, J. Biol. Chem., 273, 26408, 10.1074/jbc.273.41.26408 Couchman, 2010, Transmembrane signaling proteoglycans, Annu. Rev. Cell Dev. Biol., 26, 89, 10.1146/annurev-cellbio-100109-104126 Kolset, 2004, Intracellular proteoglycans, Biochem. J., 379, 217, 10.1042/bj20031230 Pratta, 2000, Age-related changes in aggrecan glycosylation affect cleavage by aggrecanase, J. Biol. Chem., 275, 39096, 10.1074/jbc.M006201200 Tortorella, 2000, The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage, J. Biol. Chem., 275, 25791, 10.1074/jbc.M001065200 Poon, 2005, N-linked keratan sulfate in the aggrecan interglobular domain potentiates aggrecanase activity, J. Biol. Chem., 280, 23615, 10.1074/jbc.M412145200 Barry, 1992, Hyaluronan-binding region of aggrecan from pig laryngeal cartilage, Biochem. J., 286, 761, 10.1042/bj2860761 Barry, 1995, N- and O-linked keratan sulfate on the hyaluronan binding region of aggrecan from mature and immature bovine cartilage, J. Biol. Chem., 270, 20516, 10.1074/jbc.270.35.20516 Fosang, 2009, Keratan sulphate in the interglobular domain has a microstructure that is distinct from keratan sulphate elsewhere on pig aggrecan, Matrix Biol., 28, 53, 10.1016/j.matbio.2008.11.001 Yamaguchi, 2000, Lecticans: organizers of the brain extracellular matrix, Cell. Mol. Life Sci., 57, 276, 10.1007/PL00000690 Spicer, 2003, A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links, J. Biol. Chem., 278, 21083, 10.1074/jbc.M213100200 Goetinck, 1987, The tandemly repeated sequences of cartilage link protein contain the sites for interaction with hyaluronic acid, J. Cell Biol., 105, 2403, 10.1083/jcb.105.5.2403 Aspberg, 1997, The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety, Proc. Natl. Acad. Sci. U. S. A., 94, 10116, 10.1073/pnas.94.19.10116 Day, 2004, Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins, J. Biol. Chem., 279, 12511, 10.1074/jbc.M400242200 Isogai, 2002, Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks, J. Biol. Chem., 277, 4565, 10.1074/jbc.M110583200 Aspberg, 1999, Fibulin-1 is a ligand for the c-type lectin domains of aggrecan and versican, J. Biol. Chem., 274, 20444, 10.1074/jbc.274.29.20444 Olin, 2001, The proteoglycans aggrecan and versican form networks with fibulin-2 through their lectin domain binding, J. Biol. Chem., 276, 1253, 10.1074/jbc.M006783200 Fulop, 1993, Expression of alternatively spliced epidermal growth factor-like domains in aggrecans of different species, J. Biol. Chem., 268, 17377, 10.1016/S0021-9258(19)85345-0 Dours-Zimmermann, 1994, A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican, J. Biol. Chem., 269, 32992, 10.1016/S0021-9258(20)30089-2 Ito, 1995, Multiple forms of mouse PG-M, a large chondroitin sulfate proteoglycan generated by alternative splicing, J. Biol. Chem., 270, 958, 10.1074/jbc.270.2.958 Antonsson, 1989, The keratan sulfate-enriched region of bovine cartilage proteolgycan consisits of a consecutively repeated hexapeptide motif, J. Biol. Chem., 264, 16170, 10.1016/S0021-9258(18)71603-7 Brown, 1994, Oligosaccharides derived from bovine articular cartilage keratan sulfates after keratanase II digestion: implications for keratan sulfate structural fingerprinting, Biochemistry, 33, 4836, 10.1021/bi00182a012 Barry, 1994, Length variation in the keratan sulfate domain of mammalian aggrecan, Matrix Biol., 14, 323, 10.1016/0945-053X(94)90198-8 Oegema, 1975, Isolation and characterization of proteoglycans from the swarm rat chondrosarcoma, J. Biol. Chem., 250, 6151, 10.1016/S0021-9258(19)41171-X Venn, 1985, Absence of keratan sulphate from skeletal tissues of mouse and rat, Biochem. J., 228, 443, 10.1042/bj2280443 Kresse, 1993, Small proteoglycans, Experientia, 49, 403, 10.1007/BF01923585 Neame, 1989, The primary structure of the core protein of the small, leucine-rich proteoglycan (PG I) from bovine articular cartilage, J. Biol. Chem., 264, 8653, 10.1016/S0021-9258(18)81842-7 Blaschke, 1996, Distinct isoforms of chicken decorin contain either one or two dermatan sulfate chains, J. Biol. Chem., 271, 30347, 10.1074/jbc.271.48.30347 Fisher, 1989, Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species, J. Biol. Chem., 264, 4571, 10.1016/S0021-9258(18)83781-4 Roughley, 1993, Non-proteoglycan forms of biglycan increase with age in human articular cartilage, Biochem. J., 295, 421, 10.1042/bj2950421 Grover, 1995, Expression of cell-surface proteoglycan mRNA by human articular chondrocytes, Biochem. J., 309, 963, 10.1042/bj3090963 Roughley, 1996, Presence of pro-forms of decorin and biglycan in human articular cartilage, Biochem. J., 318, 779, 10.1042/bj3180779 Roughley, 1996, Changes with age in the structure of fibromodulin in human articular cartilage, Osteoarthr. Cartil., 4, 153, 10.1016/S1063-4584(96)80011-2 Corpuz, 1996, Molecular cloning and tissue distribution of keratocan. Bovine corneal keratan sulfate proteoglycan 37A, J. Biol. Chem., 271, 9759, 10.1074/jbc.271.16.9759 Vogel, 1984, Specific inhibition of type I and type II collagen fibrillogensis by the small proteoglycans from tendon, Biochem. J., 223, 587, 10.1042/bj2230587 Merline, 2009, The matricellular functions of small leucine-rich proteoglycans (SLRPs), J. Cell Commun. Signal., 3, 323, 10.1007/s12079-009-0066-2 Iozzo, 2010, Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans, FEBS J., 277, 3864, 10.1111/j.1742-4658.2010.07797.x Fosang, 2010, Neoepitope antibodies against MMP-cleaved and aggrecanase-cleaved aggrecan, Methods Mol. Biol., 622, 312 Hughes, 1995, Monoclonal antibodies that specifically recognise neo-epitope sequences generated by “aggrecanase” and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro, Biochem. J., 305, 799, 10.1042/bj3050799 Abbaszade, 1999, Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family, J. Biol. Chem., 274, 23443, 10.1074/jbc.274.33.23443 Tortorella, 1999, Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins, Science, 284, 1664, 10.1126/science.284.5420.1664 Rogerson, 2008, Evidence of a novel aggrecan-degrading activity in cartilage: studies of mice deficient in both ADAMTS-4 and ADAMTS-5, Arthritis Rheum., 58, 1664, 10.1002/art.23458 Matthews, 2000, Brain-enriched Hyaluronan Binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member, J. Biol. Chem., 275, 22695, 10.1074/jbc.M909764199 Sandy, 2001, Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4, J. Biol. Chem., 276, 13372, 10.1074/jbc.M009737200 Mercuri, 2000, Mutations in the interglobular domain of aggrecan alter matrix metalloproteinase and aggrecanase cleavage patterns. Evidence that matrix metalloproteinase cleavage interferes with aggrecanase activity, J. Biol. Chem., 275, 33038, 10.1074/jbc.275.42.33038 Little, 2007, Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair, J. Clin. Invest., 117, 1627, 10.1172/JCI30765 Viapiano, 2008, BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion, J. Neurooncol., 88, 261, 10.1007/s11060-008-9575-8 Hu, 2008, The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility, J. Biol. Chem., 283, 24848, 10.1074/jbc.M801433200 Mort, 2003, Use of anti-neoepitope antibodies for the analysis of degradative events in cartilage and the molecular basis for neoepitope specificity, Biochem. Soc. Symp., 107, 10.1042/bss0700107 Powell, 2007, Low molecular weight isoforms of the aggrecanases are responsible for the cytokine-induced proteolysis of aggrecan in a porcine chondrocyte culture system, Arthritis Rheum., 56, 3010, 10.1002/art.22818 Tortorella, 2002, Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4), Matrix Biol., 21, 499, 10.1016/S0945-053X(02)00069-0 Tortorella, 2000, Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4), J. Biol. Chem., 275, 18566, 10.1074/jbc.M909383199 East, 2007, ADAMTS-5 deficiency does not block aggrecanolysis at preferred cleavage sites in the chondroitin sulphate-rich region of aggrecan, J. Biol. Chem., 282, 8632, 10.1074/jbc.M605750200 Durigova, 2008, Characterization of an ADAMTS-5-mediated cleavage site in aggrecan in OSM-stimulated bovine cartilage, Osteoarthr. Cartil., 16, 1245, 10.1016/j.joca.2008.02.013 Stanton, 2005, ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro, Nature, 434, 648, 10.1038/nature03417 Glasson, 2005, Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis, Nature, 434, 644, 10.1038/nature03369 Fosang, 2010, Identifying the human aggrecanase, Osteoarthr. Cartil., 18, 1109, 10.1016/j.joca.2010.06.014 Rogerson, 2010, Cytokine-induced increases in ADAMTS-4 messenger RNA expression do not lead to increased aggrecanase activity in ADAMTS-5-deficient mice, Arthritis Rheum., 62, 3365, 10.1002/art.27661 Song, 2007, Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5, Arthritis Rheum., 56, 575, 10.1002/art.22334 Paulsson, 1987, Extended and globular protein domains in cartilage proteoglycans, Biochem. J., 245, 763, 10.1042/bj2450763 Dennis, 1990, Ultrastructural characterization of embryonic chick cartilage proteoglycan core protein and the mapping of a monoclonal antibody epitope, J. Biol. Chem., 265, 12098, 10.1016/S0021-9258(19)38511-4 Ilic, 1998, Characterization of aggrecan retained and lost from the extracellular matrix of articular cartilage. Involvement of carboxyl-terminal processing in the catabolism of aggrecan, J. Biol. Chem., 273, 17451, 10.1074/jbc.273.28.17451 Sandy, 2000, The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1, Biochem. J., 351, 1, 10.1042/0264-6021:3510161 Sandy, 2001, Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo, Biochem. J., 358, 615, 10.1042/0264-6021:3580615 Struglics, 2006, Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments, Osteoarthr. Cartil., 14, 101, 10.1016/j.joca.2005.07.018 Struglics, 2006, Estimation of the identity of proteolytic aggrecan fragments using PAGE migration and Western immunoblot, Osteoarthr. Cartil., 14, 898, 10.1016/j.joca.2006.02.016 Majumdar, 2007, Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis, Arthritis Rheum., 56, 3670, 10.1002/art.23027 Glasson, 2004, Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice, Arthritis Rheum., 50, 2547, 10.1002/art.20558 Samiric, 2004, Characterisation of proteoglycans and their catabolic products in tendon and explant cultures of tendon, Matrix Biol., 23, 127, 10.1016/j.matbio.2004.03.004 Rees, 2000, Catabolism of aggrecan, decorin and biglycan in tendon, Biochem. J., 350, 181, 10.1042/0264-6021:3500181 Rees, 2009, Metabolism of proteoglycans in tendon, Scand. J. Med. Sci. Sports, 19, 470, 10.1111/j.1600-0838.2009.00938.x Yamanishi, 2002, Expression and regulation of aggrecanase in arthritis: the role of TGF-beta, J. Immunol., 168, 1405, 10.4049/jimmunol.168.3.1405 East, 2007, ADAMTS-5 activity in synovial fibroblasts is different to chondrocytes, 576 Fosang, 2008, ADAMTS-5: the story so far, Eur. Cell. Mater., 15, 11, 10.22203/eCM.v015a02 Durigova, 2011, Involvement of ADAMTS5 and hyaluronidase in aggrecan degradation and release from OSM-stimulated cartilage, Eur. Cell. Mater., 21, 31, 10.22203/eCM.v021a03 Rees, 2009, Immunolocalisation and expression of keratocan in tendon, Osteoarthr. Cartil., 17, 276, 10.1016/j.joca.2008.07.007 Melching, 2006, The cleavage of biglycan by aggrecanases, Osteoarthr. Cartil., 14, 1147, 10.1016/j.joca.2006.05.014 Melrose, 2009, Catabolism of fibromodulin in pathologic articular cartilage: evidence of a novel role for MMP-13 and ADAMTS-4 on C-terminal processing and fragmentation, 1030 Rees, 2007, Inhibition of aggrecan turnover in short-term explant cultures of bovine tendon, Matrix Biol., 26, 280, 10.1016/j.matbio.2007.01.003 Heathfield, 2004, Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13, J. Biol. Chem., 279, 6286, 10.1074/jbc.M307765200 Monfort, 2006, Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage site, Arthritis Res. Ther., 8, R26, 10.1186/ar1873 Sztrolovics, 1999, Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism, Biochem. J., 339, 3, 10.1042/0264-6021:3390571 Geng, 2006, SLRP interaction can protect collagen fibrils from cleavage by collagenases, Matrix Biol., 25, 484, 10.1016/j.matbio.2006.08.259 Gary, 1998, BEHAB/brevican: a brain-specific lectican implicated in gliomas and glial cell motility, Curr. Opin. Neurobiol., 8, 576, 10.1016/S0959-4388(98)80083-4 Viapiano, 2006, From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology, Trends Mol. Med., 12, 488, 10.1016/j.molmed.2006.08.007 Nutt, 2001, Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican, Neuroscientist, 7, 113, 10.1177/107385840100700206 Nakamura, 2000, Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites, J. Biol. Chem., 275, 38885, 10.1074/jbc.M003875200 Espey, 2000, Ovarian expression of a disintegrin and metalloproteinase with thrombospondin motifs during ovulation in the gonadotropin-primed immature rat, Biol. Reprod., 62, 1090, 10.1095/biolreprod62.4.1090 Nakada, 2005, Human glioblastomas overexpress ADAMTS-5 that degrades brevican, Acta Neuropathol. (Berl.), 110, 239, 10.1007/s00401-005-1032-6 Viapiano, 2005, Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas, Cancer Res., 65, 6726, 10.1158/0008-5472.CAN-05-0585 Wight, 2002, Versican: a versatile extracellular matrix proteoglycan in cell biology, Curr. Opin. Cell Biol., 14, 617, 10.1016/S0955-0674(02)00375-7 Cross, 2005, The expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFbeta1 in prostate cells: relevance to the accumulation of versican, Prostate, 63, 269, 10.1002/pros.20182 Silver, 2008, The secreted metalloprotease ADAMTS20 is required for melanoblast survival, PLoS Genet., 4, e1000003, 10.1371/journal.pgen.1000003 Westling, 2004, ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein, Biochem. J., 377, 787, 10.1042/bj20030896 Kenagy, 2006, Versican degradation and vascular disease, Trends Cardiovasc. Med., 16, 209, 10.1016/j.tcm.2006.03.011 Lemire, 1999, Versican/PG-M isoforms in vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol., 19, 1630, 10.1161/01.ATV.19.7.1630 Cattaruzza, 2002, Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro, J. Biol. Chem., 277, 47626, 10.1074/jbc.M206521200 Wight, 2005, The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)!, Arterioscler. Thromb. Vasc. Biol., 25, 12, 10.1161/01.ATV.0000150043.43083.aa Wight, 2004, Proteoglycans in atherosclerosis and restenosis: key roles for versican, Circ. Res., 94, 1158, 10.1161/01.RES.0000126921.29919.51 Salter, 2010, ADAMTS proteases: key roles in atherosclerosis?, J. Mol. Med. (Berl)., 88, 1203, 10.1007/s00109-010-0654-x Hirose, 2001, Versican interacts with chemokines and modulates cellular responses, J. Biol. Chem., 276, 5228, 10.1074/jbc.M007542200 Kawashima, 2000, Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44, J. Biol. Chem., 275, 35448, 10.1074/jbc.M003387200 Kolodgie, 2004, The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture, Curr. Opin. Lipidol., 15, 575, 10.1097/00041433-200410000-00012 Evanko, 1999, Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol., 19, 1004, 10.1161/01.ATV.19.4.1004 Matsuura, 1996, Deposition of PG-M/versican is a major cause of human coronary restenosis after percutaneous transluminal coronary angioplasty, J. Pathol., 180, 311, 10.1002/(SICI)1096-9896(199611)180:3<311::AID-PATH657>3.0.CO;2-B Imanaka-Yoshida, 2001, Serial extracellular matrix changes in neointimal lesions of human coronary artery after percutaneous transluminal coronary angioplasty: clinical significance of early tenascin-C expression, Virchows Arch., 439, 185, 10.1007/s004280000390 Farb, 2004, Extracellular matrix changes in stented human coronary arteries, Circulation, 110, 940, 10.1161/01.CIR.0000139337.56084.30 Kenagy, 2005, Accumulation and loss of extracellular matrix during shear stress-mediated intimal growth and regression in baboon vascular grafts, J. Histochem. Cytochem., 53, 131, 10.1177/002215540505300115 Kenagy, 2009, Cell death-associated ADAMTS4 and versican degradation in vascular tissue, J. Histochem. Cytochem., 57, 889, 10.1369/jhc.2009.953901 Jonsson-Rylander, 2005, Role of ADAMTS-1 in atherosclerosis: remodeling of carotid artery, immunohistochemistry, and proteolysis of versican, Arterioscler. Thromb. Vasc. Biol., 25, 180, 10.1161/01.ATV.0000150045.27127.37 Wagsater, 2008, ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques, Atherosclerosis, 196, 514, 10.1016/j.atherosclerosis.2007.05.018 Fu, 2011, Proteolytic cleavage of versican and involvement of ADAMTS-1 in VEGF-A/VPF-induced pathological angiogenesis, J. Histochem. Cytochem., 59, 463, 10.1369/0022155411401748 Salustri, 1999, Hyaluronan and proteoglycans in ovarian follicles, Hum. Reprod. Update, 5, 293, 10.1093/humupd/5.4.293 Russell, 2003, Hormone-regulated expression and localization of versican in the rodent ovary, Endocrinology, 144, 1020, 10.1210/en.2002-220434 Russell, 2003, Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation, J. Biol. Chem., 278, 42330, 10.1074/jbc.M300519200 Ohnishi, 2005, Functions for proteinases in the ovulatory process, Biochim. Biophys. Acta, 1751, 95, 10.1016/j.bbapap.2005.05.002 Mittaz, 2004, Adamts-1 is essential for the development and function of the urogenital system, Biol. Reprod., 70, 1096, 10.1095/biolreprod.103.023911 Shindo, 2000, ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function [see comments], J. Clin. Invest., 105, 1345, 10.1172/JCI8635 Lydon, 1995, Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities, Genes Dev., 9, 2266, 10.1101/gad.9.18.2266 Robker, 2000, Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases, Proc. Natl. Acad. Sci. U. S. A., 97, 4689, 10.1073/pnas.080073497 Brown, 2006, Requirement for ADAMTS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis, Dev. Biol., 300, 699, 10.1016/j.ydbio.2006.10.012 Shozu, 2005, ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary, J. Mol. Endocrinol., 35, 343, 10.1677/jme.1.01735 Nakamura, 2005, Expression of versican and ADAMTS1, 4, and 5 during bone development in the rat mandible and hind limb, J. Histochem. Cytochem., 53, 1553, 10.1369/jhc.5A6669.2005 McCulloch, 2009, ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression, Dev. Cell, 17, 687, 10.1016/j.devcel.2009.09.008 Enomoto, 2010, Cooperation of two ADAMTS metalloproteases in closure of the mouse palate identifies a requirement for versican proteolysis in regulating palatal mesenchyme proliferation, Development, 137, 4029, 10.1242/dev.050591 Velasco, 2011, ADAMTS5 ablation blocks murine dermal repair through CD44-mediated aggrecan accumulation and modulation of TGFbeta1 signaling, J. Biol. Chem., 286, 26016, 10.1074/jbc.M110.208694 Capehart, 2010, Proteolytic cleavage of versican during limb joint development, Anat. Rec., 293, 208, 10.1002/ar.21049 Dupuis, 2011, Altered versican cleavage in ADAMTS5 deficient mice; a novel etiology of myxomatous valve disease, Dev. Biol., 357, 152, 10.1016/j.ydbio.2011.06.041 Hattori, 2011, Pericellular versican regulates the fibroblast-myofibroblast transition. A role for ADAMTS5-mediated proteolysis, J. Biol. Chem., 286, 34298, 10.1074/jbc.M111.254938 Yang, 2003, Versican G3 domain enhances cellular adhesion and proliferation of bovine intervertebral disc cells cultured in vitro, Life Sci., 73, 3399, 10.1016/j.lfs.2003.06.018 Yang, 1999, Cell adhesion and proliferation mediated through the G1 domain of versican, J. Cell. Biochem., 72, 210, 10.1002/(SICI)1097-4644(19990201)72:2<210::AID-JCB5>3.0.CO;2-E Zhang, 2001, Versican modulates embryonic chondrocyte morphology via the epidermal growth factor-like motifs in G3, Exp. Cell Res., 263, 33, 10.1006/excr.2000.5095 Hardingham, 1992, Proteoglycans: many forms and many functions, FASEB J., 6, 861, 10.1096/fasebj.6.3.1740236