Protein structure homology modeling using SWISS-MODEL workspace

Nature Protocols - Tập 4 Số 1 - Trang 1-13 - 2009
Lorenza Bordoli1, Florian Kiefer2,3, Konstantin Arnold2,3, Pascal Benkert2,3, James N. D. Battey2,3, Torsten Schwede2,3
1Biozentrum, University of Basel, Klingelbergstrasse 50–70, CH–4056 Basel, Switzerland
2Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel, Switzerland
3Swiss Institute of Bioinformatics, Klingelbergstrasse 50/70, Basel, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berman, H., Henrick, K., Nakamura, H. & Markley, J.L. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids. Res. 35, D301–D303 (2007).

Wu, C.H. et al. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids. Res. 34, D187–D191 (2006).

Chothia, C. Proteins. One thousand families for the molecular biologist. Nature 357, 543–544 (1992).

Chothia, C. & Lesk, A.M. The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826 (1986).

Topham, C.M. et al. An assessment of COMPOSER: a rule-based approach to modelling protein structure. Biochem. Soc. Symp. 57, 1–9 (1990).

Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

Peitsch, M.C. Protein modelling by e-mail. BioTechnology 13, 658–660 (1995).

Tramontano, A. & Morea, V. Assessment of homology-based predictions in CASP5. Proteins 53 (Suppl. 6): 352–368 (2003).

Tress, M., Ezkurdia, I., Grana, O., Lopez, G. & Valencia, A. Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 61 (Suppl. 7): 27–45 (2005).

Jauch, R., Yeo, H.C., Kolatkar, P.R. & Clarke, N.D. Assessment of CASP7 structure predictions for template free targets. Proteins 69 (Suppl. 8): 57–67 (2007).

Kopp, J., Bordoli, L., Battey, J.N., Kiefer, F. & Schwede, T. Assessment of CASP7 predictions for template-based modeling targets. Proteins 69 (Suppl. 8): 38–56 (2007).

Kryshtafovych, A., Fidelis, K. & Moult, J. Progress from CASP6 to CASP7. Proteins 69 (Suppl. 8): 194–207 (2007).

Hillisch, A., Pineda, L.F. & Hilgenfeld, R. Utility of homology models in the drug discovery process. Drug Discov. Today 9, 659–669 (2004).

Kopp, J. & Schwede, T. Automated protein structure homology modeling: a progress report. Pharmacogenomics 5, 405–416 (2004).

Marti-Renom, M.A. et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000).

Peitsch, M.C. About the use of protein models. Bioinformatics 18, 934–938 (2002).

Tramontano, A. In Computational Structural Biology (eds. Schwede T. & Peitsch M.C.) (World Scientific Publishing, Singapore, 2008).

Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93–96 (2001).

Soto, C.S., Fasnacht, M., Zhu, J., Forrest, L. & Honig, B. Loop modeling: sampling, filtering, and scoring. Proteins 70, 834–843 (2008).

Rohl, C.A., Strauss, C.E., Chivian, D. & Baker, D. Modeling structurally variable regions in homologous proteins with rosetta. Proteins 55, 656–677 (2004).

Fiser, A., Do, R.K. & Sali, A. Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000).

Canutescu, A.A., Shelenkov, A.A. & Dunbrack, R.L. Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12, 2001–2014 (2003).

Rost, B. Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94 (1999).

Dunbrack, R.L. Jr. Sequence comparison and protein structure prediction. Curr. Opin. Struct. Biol. 16, 374–384 (2006).

Sommer, I., Toppo, S., Sander, O., Lengauer, T. & Tosatto, S.C. Improving the quality of protein structure models by selecting from alignment alternatives. BMC Bioinformatics 7, 364 (2006).

Tress, M.L., Jones, D. & Valencia, A. Predicting reliable regions in protein alignments from sequence profiles. J. Mol. Biol. 330, 705–718 (2003).

Vingron, M. Near-optimal sequence alignment. Curr. Opin. Struct. Biol. 6, 346–352 (1996).

Melo, F. & Feytmans, E. Assessing protein structures with a non-local atomic interaction energy. J. Mol. Biol. 277, 1141–1152 (1998).

Sippl, M.J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213, 859–883 (1990).

Zhou, H. & Zhou, Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11, 2714–2726 (2002).

Fasnacht, M., Zhu, J. & Honig, B. Local quality assessment in homology models using statistical potentials and support vector machines. Protein Sci. 16, 1557–1568 (2007).

Wallner, B. & Elofsson, A. Identification of correct regions in protein models using structural, alignment, and consensus information. Protein Sci. 15, 900–913 (2006).

Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

Hooft, R.W., Vriend, G., Sander, C. & Abola, E.E. Errors in protein structures. Nature 381, 272 (1996).

Aloy, P., Pichaud, M. & Russell, R.B. Protein complexes: structure prediction challenges for the 21st century. Curr. Opin. Struct. Biol. 15, 15–22 (2005).

Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature 450, 683–694 (2007).

Junne, T., Schwede, T., Goder, V. & Spiess, M. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol. Biol. Cell 17, 4063–4068 (2006).

Battey, J.N. et al. Automated server predictions in CASP7. Proteins 69 (Suppl. 8): 68–82 (2007).

Koh, I.Y. et al. EVA: evaluation of protein structure prediction servers. Nucleic Acids. Res. 31, 3311–3315 (2003).

Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

Eswar, N. et al. Tools for comparative protein structure modeling and analysis. Nucleic Acids. Res. 31, 3375–3380 (2003).

Bates, P.A., Kelley, L.A., MacCallum, R.M. & Sternberg, M.J. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins (Suppl. 5): 39–46 (2001).

Fernandez-Fuentes, N., Madrid-Aliste, C.J., Rai, B.K., Fajardo, J.E. & Fiser, A. M4T: a comparative protein structure modeling server. Nucleic Acids Res. 35, W363–W368 (2007).

Fox, J.A., McMillan, S. & Ouellette, B.F. Conducting research on the web: 2007 update for the bioinformatics links directory. Nucleic Acids Res. 35, W3–W5 (2007).

Schwede, T., Diemand, A., Guex, N. & Peitsch, M.C. Protein structure computing in the genomic era. Res. Microbiol. 151, 107–112 (2000).

Kopp, J. & Schwede, T. The SWISS-MODEL repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res. 32, D230–D234 (2004).

Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

Andreeva, A. et al. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 32, D226–D229 (2004).

Greene, L.H. et al. The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res. 35, D291–D297 (2007).

Finn, R.D. et al. The Pfam protein families database. Nucleic Acids Res. 36, D281–D288 (2008).

Zdobnov, E.M. & Apweiler, R. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001).

Mulder, N.J. et al. New developments in the InterPro database. Nucleic Acids Res. 35, D224–228 (2007).

Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

Jones, D.T. & Ward, J.J. Prediction of disordered regions in proteins from position specific score matrices. Proteins 53 (Suppl. 6): 573–578 (2003).

Jones, D.T., Taylor, W.R. & Thornton, J.M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33, 3038–3049 (1994).

Fink, A.L. Natively unfolded proteins. Curr. Opin. Struct. Biol. 15, 35–41 (2005).

Radivojac, P. et al. Intrinsic disorder and functional proteomics. Biophys. J. 92, 1439–1456 (2007).

Dyson, H.J. & Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

Wheeler, D.L. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 33 Database Issue: D39–D45 (2005).

Soding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005).

Muller, C.W., Schlauderer, G.J., Reinstein, J. & Schulz, G.E. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 4, 147–156 (1996).

Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–248 (2005).

Benkert, P., Tosatto, S.C. & Schomburg, D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71, 261–277 (2008).

van Gunsteren, W.F. et al. Biomolecular Simulations: the GROMOS96 Manual and User Guide (VdF Hochschulverlag ETHZ, Zürich, 1996).

Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).

Hulo, N. et al. The PROSITE database. Nucleic Acids Res. 34, D227–D230 (2006).

Stivers, J.T. & Jiang, Y.L. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 103, 2729–2759 (2003).

Seeberg, E., Eide, L. & Bjoras, M. The base excision repair pathway. Trends Biochem. Sci. 20, 391–397 (1995).

Alseth, I. et al. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD. Mol. Microbiol. 59, 1602–1609 (2006).

Groves, M.R. & Barford, D. Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389 (1999).

Dalhus, B. et al. Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats. Nucleic Acids Res. 35, 2451–2459 (2007).

Nishizuka, Y. Membrane phospholipid degradation and protein kinase C for cell signalling. Neurosci. Res. 15, 3–5 (1992).

Mellor, H. & Parker, P.J. The extended protein kinase C superfamily. Biochem. J. 332 (Part 2): 281–292 (1998).

Zhang, G., Kazanietz, M.G., Blumberg, P.M. & Hurley, J.H. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell 81, 917–924 (1995).

Henrick, K. & Thornton, J.M. PQS: a protein quaternary structure file server. Trends Biochem. Sci. 23, 358–361 (1998).

Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).