Protein-protein interaction modulators: advances, successes and remaining challenges
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337. https://doi.org/10.1038/sj.onc.1210220
Albert L, Peñalver A, Djokovic N (2019) Modulating protein-protein interactions with visible-light responsive peptide backbone photoswitches. ChemBioChem 20:1–14. https://doi.org/10.1002/cbic.201800737
Ali AM, Atmaj J, Oosterwijk NV (2019) Stapled peptides inhibitors: a new window for target drug discovery. Comput Struct Biotechnol J 17:263–281. https://doi.org/10.1016/j.csbj.2019.01.012
Alihodzić S, Bukvić M, Elenkov I et al (2018) Current trends in macrocyclic drug discovery and beyond -Ro5. Prog Med Chem 57:113–233. https://doi.org/10.1016/bs.pmch.2018.01.002
Allison M (2009) Bristol-Myers Squibb swallows last of antibody pioneers. Nat Biotechnol 27:781–783. https://doi.org/10.1038/nbt0909-781
Al-Shehabi H, Fiebig U, Kutzner J et al (2019) Human SAMHD1 restricts the xenotransplantation relevant porcine endogenous retrovirus (PERV) in non-dividing cells. J Gen Virol 100:656–661. https://doi.org/10.1099/jgv.0.001232
Arkin MR, Randal M, DeLano WL et al (2003) Binding of small molecules to an adaptive protein–protein interface. Proc Natl Acad Sci USA 100:1603–1608. https://doi.org/10.1073/pnas.252756299
Bauer RA, Wurst JM, Tan DS (2010) Expanding the range of “druggable” targets with natural product-based libraries: an academic perspective. Curr Opin Chem Biol 14:308–314. https://doi.org/10.1016/j.cbpa.2010.02.001
Basso A, Park SB, Moni L (2019) Editorial: diversity oriented synthesis. Front Chem 6:668. https://doi.org/10.3389/fchem.2018.00668
Booij TH, Price LS, Danen EHJ (2019) 3D cell-based assays for drug screens: challenges in imaging, image analysis, and high-content analysis. SLAS discovery 1–13. https://doi.org/10.1177/2472555219830087
Boone DN, Qi Y, Li Z et al (2011) Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Pro Nat Acad Sci USA 108:632–637. https://doi.org/10.1073/pnas.1008848108
Bhullar KS, Lagarón NO, McGowan EM et al (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 17:48. https://doi.org/10.1186/s12943-018-0804-2
Carballo GB, Honorato JR, Farias de Lopes GP (2018) A highlight on Sonic Hedgehog pathway. Cell Commun Signal 16:11. https://doi.org/10.1186/s12964-018-0220-7
Carry JC, Garcia-Echeverria C (2013) Inhibitors of the p53/hdm2 protein–protein interaction—path to the clinic. Bioorg Med Chem Lett 23:2480–2485. https://doi.org/10.1016/j.bmcl.2013.03.034
Ceccarelli DF, Tang X, Pelletier B et al (2011) An allosteric inhibitor of the human Cdc34 ubiquitin conjugating enzyme. Cell 145:1075–1087. https://doi.org/10.1016/j.cell.2011.05.039
Cencic R, Hall DR, Robert F et al (2011) Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proc Natl Acad Sci USA 108:1046–1051. https://doi.org/10.1073/pnas.1011477108
Cerchietti LC, Ghetu AF, Zhu X et al (2010) A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 17:400–411. https://doi.org/10.1016/j.ccr.2009.12.050
Cheok CF, Verma CS, Baselga J et al (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8:25–37. https://doi.org/10.1038/nrclinonc.2010.174
Christian F, Szaszák M, Friedl S et al (2011) Small molecule AKAP-protein kinase a (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J Biol Chem 286:9079–9096. https://doi.org/10.1074/jbc.M110.160614
Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386. https://doi.org/10.1126/science.7529940
Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143:686–693. https://doi.org/10.1016/j.cell.2010.11.016
Compton LA, Hiebert SW (2010) Anticancer therapy SMRT-ens up: targeting the BCL6-SMRT interaction in B cell lymphoma. Cancer Cell 17:315–316. https://doi.org/10.1016/j.ccr.2010.03.012
Conn PJ, Christopoulos A, Lindsley CW (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8:41–54. https://doi.org/10.1038/nrd2760
Crane EK, Kwan SY, Izaguirre DI (2015) Nutlin-3a: a potential therapeutic opportunity for TP53 wild-type ovarian carcinomas. PLoS One 10(8):e0135101. https://doi.org/10.1371/journal.pone.0135101
Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219. https://doi.org/10.1016/S0092-8674(04)00046-7
Dash R, Richards JE, Su ZZ et al (2010) Mechanism by which Mcl-1 regulates cancer-specific apoptosis triggered by mda-7/IL-24, an IL-10-related cytokine. Cancer Res 70:5034–5045. https://doi.org/10.1158/0008-5472.CAN-10-0563
Davies SL, Serradell N, Bolos J et al (2007) Plerixafor hydrochloride. Drug Today 32:123–136
Debouck C, Metcalf B (2000) The impact of genomics on drug discovery. Annu Rev Pharmacol Toxicol 40:193–208. https://doi.org/10.1146/annurev.pharmtox.40.1.193
Deshaies RJ (2009) Drug discovery: fresh target for cancer therapy. Nature 458:709–710. https://doi.org/10.1038/458709a
Díaz-Eufracio BI, JesúsNaveja J, Medina-Franco JL (2018) Protein-protein interaction modulators for epigenetic therapies. In: Donev R (ed) Advances in protein chemistry and structural biology, 1st edn. Swansea University, UK, pp 65–84. https://doi.org/10.1016/bs.apcsb.2017.06.002
Dorr P, Westby M, Dobbs S et al (2005) Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 49:4721–4732. https://doi.org/10.1128/AAC.49.11.4721-4732.2005
Drahl C (2009) Big hopes ride on big rings. ACS Meeting News: constraining molecules in macrocyclic rings could help address challenges in drug discovery. Chem Eng News 87:54–57. https://doi.org/10.1021/cen-v087n036.p054
Driggers EM, Hale SP, Lee J et al (2008) The exploration of macrocycles for drug discovery – an underexploited structural class. Nat Rev Drug Discov 7:608–624. https://doi.org/10.1038/nrd2590
Du L, Grigsby SM, Yao A et al (2018) Peptidomimetics for targeting protein–protein interactions between DOT1L and MLL oncofusion proteins AF9 and ENL. ACS Med Chem Lett 9:895–900. https://doi.org/10.1021/acsmedchemlett.8b00175
Duan Z, Tu M, Zhang Q et al (2018) Novel therapeutic strategy to inhibit growth of pancreatic cancer organoids using a rational combination of drugs to induce mitotic arrest and apoptosis. J Clin Oncol 36:322–322. https://doi.org/10.1200/JCO.2018.36.4_suppl.322
Dustin ML, Bivona TG, Philips MR (2004) Membranes as messengers in T cell adhesion signaling. Nat Immunol 5:363–372. https://doi.org/10.1038/ni1057
Erlanson DA, Fesik SW, Hubbard RE et al (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15:605–619. https://doi.org/10.1038/nrd.2016.109
Erickson-Miller CL, DeLorme E, Tian SS et al (2005) Discovery and characterization of a selective, nonpeptidyl thrombopoietin receptor agonist. Exp Hematol 33:85–93. https://doi.org/10.1016/j.exphem.2004.09.006
Everts S (2008) Piece by Piece. Chem Eng News 86:15–23
Fecková B, Kimáková P, Ilkovičová L et al (2019) Methylation of the first exon in the erythropoietin receptor gene does not correlate with its mRNA and protein level in cancer cells. BMC Genet 20:1. https://doi.org/10.1186/s12863-018-0706-8
Feng Y, Wang Q, Wang T et al (2017) Drug target protein-protein interaction networks: a systematic perspective. Biomed Res Int 2017:1–13. https://doi.org/10.1155/2017/1289259
Ferguson FM, Gray NS (2018) Kinase inhibitors: the road ahead. Nat Rev Drug Discov 17:353–377. https://doi.org/10.1038/nrd.2018.21
Franzini R, Randolph C (2016) Chemical space of DNA-encoded libraries. J Med Chem 59:6629–6644. https://doi.org/10.1021/acs.jmedchem.5b01874
Friedberg JW (2011) New strategies in diffuse large B-cell lymphoma: Translating findings from gene expression analyses into clinical practice. Clin Cancer Res 108:1046–1051. https://doi.org/10.1158/1078-0432.CCR-11-1073
Galloway WR, Isidro-Llobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 1:80. https://doi.org/10.1038/ncomms1081
Goard CA, Schimmer AD (2013) An evidence-based review of obatoclax mesylate in the treatment of hematological malignancies. Core Evidence 8:15–26. https://doi.org/10.2147/CE.S42568
Gonzalez MW, Kann MG (2012) Protein interactions and disease. PLoS Comput Biol 8:e1002819. https://doi.org/10.1371/journal.pcbi.1002819
Gorczynski MJ, Grembecka J, Zhou Y et al (2007) Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol 14:1186–1197. https://doi.org/10.1016/j.chembiol.2007.09.006
Graff JR, Konicek BW, Carter JH et al (2008) Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68:631–634. https://doi.org/10.1158/0008-5472.CAN-07-5635
Grosdidier S, Totrov M, Fernández-Recio J (2009) Computer applications for prediction of protein–protein interactions and rational drug design. Adv Appl Bioinforma Chem 2:101–123. https://doi.org/10.2147/AABC.S6272
Grossmann TN, Pelay-Gimeno M, Glas A et al (2015) Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed 54:8896–8927. https://doi.org/10.1002/anie.201412070
Guidolin D, Marcoli M, Tortorella C et al (2019) Receptor-receptor interactions as a widespread phenomenon: novel targets for drug development? Front Endocrinol 10:53. https://doi.org/10.3389/fendo.2019.00053
Haberman AB (2012) Advances in the discovery of protein-protein interaction modulators. SCRIP Insights Informa 2012. https://biopharmconsortium.com/2012/04/25/advances-in-the-discovery-of-protein-protein-interaction-modulators-published-by-informas-scrip-insights . Accessed 21 April 2019
Hajduk PJ, Galloway WR, Spring DR (2011) Drug discovery: a question of library design. Nature 470:42–43. https://doi.org/10.1038/470042a
Hall DR, Kozakov D, Vajda S (2012) Analysis of protein binding sites by computational solvent mapping. Methods Mol Biol 819:13–27. https://doi.org/10.1007/978-1-61779-465-02
Hansen SK, Cancilla MT, Shiau TP et al (2005) Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry 44:7704–7712. https://doi.org/10.1021/bi047417s
Hansen KB, Yi F, Perszyk RE et al (2018) Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 150:1081–1105. https://doi.org/10.1085/jgp.201812032
Haq S, Ramakrishna S (2017) Deubiquitylation of deubiquitylases. Open Biol 7:170016. https://doi.org/10.1098/rsob.170016
Hitzenberger M, Schuster D, Hofer TS (2017) The binding mode of the Sonic Hedgehog inhibitor robotnikinin, a combined docking and QM/MM MD study. Front Chem 5:76. https://doi.org/10.3389/fchem.2017.00076
Horuk R (2009) Chemokine receptor antagonists: overcoming developmental hurdles. Nat Rev Drug Discov 8:23–33. https://doi.org/10.1038/nrd2734
Huang SM, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620. https://doi.org/10.1038/nature08356
Huang O, Li J, Zheng J (2019) The carcinogenic role of the notch signaling pathway in the development of hepatocellular carcinoma. J Cancer 10:1570–1579. https://doi.org/10.7150/jca.26847
Husain B, Paduchuri S, Ramani SR et al (2019) Extracellular protein microarray technology for high throughput detection of low affinity receptor-ligand interactions. J Vis Exp 143:e58451. https://doi.org/10.3791/58451
Jana T, Ghosh A, Mandal SD et al (2017) PPIMpred: a web server for high-throughput screening of small molecules targeting protein–protein interaction. R Soc Open Sci 4:160501. https://doi.org/10.1098/rsos.160501
Jakubowska MA, Kerkhofs M, Martines C (2018) ABT-199 (Venetoclax), a BH3-mimetic Bcl-2 inhibitor, does not cause Ca2+ -signalling dysregulation or toxicity in pancreatic acinar cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1864:968–976. https://doi.org/10.1111/bph.14505
Jeong WJ, Ro EJ, Choi KY (2018) Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. Precision Oncology 2:5. https://doi.org/10.1038/s41698-018-0049-y
Jochim AL, Arora PS (2010) Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem Biol 5:919–923. https://doi.org/10.1021/cb1001747
Kalatskaya I, Berchiche YA, Gravel S et al (2009) AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol 75:1240–1247. https://doi.org/10.1124/mol.108.053389
Kalota A, Gewirtz AM (2010) A prototype nonpeptidyl, hydrazone class, thrombopoietin receptor agonist, SB-559457, is toxic to primary human myeloid leukemia cells. Blood 115:89–93. https://doi.org/10.1182/blood-2009-06-227751
Keller TH, Pichota A, Yin Z (2006) A practical view of “druggability”. Curr Opin Chem Biol 10:357–361. https://doi.org/10.1016/j.cbpa.2006.06.014
Kim YW, Grossmann TN, Verdine GL (2011) Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc 6:761–771. https://doi.org/10.1038/nprot.2011.324
Kojima K, Burks JK, Arts J et al (2010) The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther 9:2545–2557. https://doi.org/10.1158/1535-7163.MCT-10-0337
Kozakov D, Hall DR, Chuang GY et al (2011) Structural conservation of druggable hot spots in protein-protein interfaces. Proceedings of the National Academy of Sciences USA 108:13528–13533. https://doi.org/10.1073/pnas.1101835108
Landon M, Lancia DR, Yu J et al (2007) Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J Med Chem 50:1231–1240. https://doi.org/10.1021/jm061134b
Lage OM, Ramos MC, Calisto R et al (2018) Current screening methodologies in drug discovery for selected human diseases. Mar Drugs 16:279. https://doi.org/10.3390/md16080279
Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819. https://doi.org/10.1681/ASN.2006010083
Lee CW, Grubbs RH (2001) Formation of macrocycles via Ring-closing olefin metathesis. J Org Chem 66:7155–7158. https://doi.org/10.1021/jo0158480
Lepourcelet M, Chen YN, France DS et al (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5:91–102. https://doi.org/10.1016/S1535-6108(03)00334-9
Li J, Yang C, Xia Y et al (2001) Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 98:3241–3248. https://doi.org/10.1182/blood.V98.12.3241
Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165. https://doi.org/10.1126/science.1168243
Lipinski CA, Lombardo F, Dominiv BW et al (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/j.addr.2012.09.019
Luise N, Wyatt PG (2019) Diversity-oriented synthesis of bicyclic fragments containing privileged azines. Bioorg Med Chem Lett 29:248–251. https://doi.org/10.1016/j.bmcl.2018.11.046
Lygren B, Taskén K (2008) The potential use of AKAP18delta as a drug target in heart failure patients. Expert Opin Biol Ther 8:1099–1108. https://doi.org/10.1517/14712598.8.8.1099
Ma R, Wang P, Wu J et al (2016) Process of fragment-based lead discovery - a perspective from NMR. Molecules 21:E854. https://doi.org/10.3390/molecules21070854
Majer C, Schüssler JM, König R (2019) Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol. 1–17. https://doi.org/10.1007/s00430-019-00593-x
Mella RM, Kortazar D, Roura-Ferrer M (2018) Nomad biosensors: a new multiplexed technology for the screening of GPCR ligands. SLAS Technol 23:207–216. https://doi.org/10.1177/2472630318754828
Miller JL, Church TJ, Leonoudakis D et al (2015) Discovery and characterization of nonpeptidyl agonists of the tissue-protective erythropoietin receptor. Mol Pharmacol 88:357–367. https://doi.org/10.1124/mol.115.098400
Miller JH, Field JJ, Kanakkanthara A et al (2018) Marine invertebrate natural products that target microtubules. J Nat Prod 81:691–702. https://doi.org/10.1021/acs.jnatprod.7b00964
Miszta P, Jakowiecki J, Rutkowska E (2018) Approaches for differentiation and interconverting GPCR agonists and antagonists. Methods Mol Biol 1705:265–296. https://doi.org/10.1007/978-1-4939-7465-8_12
Moellering RE, Cornejo M, Davis TN et al (2009) Direct inhibition of the NOTCH transcription factor complex. Nature 462:182–188. https://doi.org/10.1038/nature08543
Modell AE, Blosser SL, Arora PS (2016) Systematic targeting of protein-protein interactions. Trends Pharmacol Sci 37:702–713. https://doi.org/10.1016/j.tips.2016.05.008
Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1:1001–1008
Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots - a review of the protein-protein interface determinant amino-acid residues. Proteins 6:803–812. https://doi.org/10.1002/prot.21396
Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. https://doi.org/10.1021/np068054v
Nguyen M, Marcellus RC, Roulston A et al (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proceedings of the National Academy of Sciences USA 104:19512–19517. https://doi.org/10.1073/pnas.0709443104
Nielsen TE, Schreiber SL (2008) Towards the optimal screening collection: a synthesis strategy. Angew Chem Int Ed Engl 47:48–56. https://doi.org/10.1002/anie.200703073
Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681. https://doi.org/10.1038/nature03579
Pan Y, Wang Z, Zhan W et al (2018) Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach. Bioinformatics 34:1473–1480. https://doi.org/10.1093/bioinformatics/btx822
Pándy-Szekeres G, Munk C, Tsonkov TM et al (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446. https://doi.org/10.1093/nar/gkx1109
Parveen A, Subedi L, Kim HW et al (2019) Phytochemicals targeting VEGF and VEGF-related multifactors as anticancer therapy. J Clin Med 8:350. https://doi.org/10.3390/jcm8030350
Roberts AW, Seymour JF, Brown JR et al (2012) Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of Navitoclax in patients with relapsed or refractory disease. J Clin Oncol 30:488–496. https://doi.org/10.1200/JCO.2011.34.7898
Robertson NS, Spring DR (2018) Using peptidomimetics and constrained peptides as valuable tools for inhibiting protein–protein interactions. Molecules 23:959. https://doi.org/10.3390/molecules23040959
Robson-Tull J (2018) Biophysical screening in fragment-based drug design: a brief overview. Bioscience Horizons: The International Journal of Student Research 11:hzy01512. https://doi.org/10.1093/biohorizons/hzy015
Rüdisser S, Vangrevelinghe E, Maibaum J (2016) An integrated approach for fragment-based lead discovery: virtual, NMR, and high-throughput screening combined with structure-guided design. Application to the aspartyl protease renin. In: Erlanson DA, Jahnke W (eds) Fragment-based drug discovery lessons and outlook, 1st edn. Wiley, New York, pp 447–480. https://doi.org/10.1002/9783527683604
Schafmeister CE, Po J, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 122:5891–5892. https://doi.org/10.1021/ja000563a
Schreiber SL (2009) Organic chemistry: molecular diversity by design. Nature 457:153–154. https://doi.org/10.1038/457153a
Shangary S, Qin D, McEachern D et al (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 105:3933–3938. https://doi.org/10.1073/pnas.0708917105
Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol.49:223-241. https://doi.org/10.1146/annurev.pharmtox.48.113006.094723
Shore GC, Viallet J (2005) Modulating the bcl-2 family of apoptosis suppressors for potential therapeutic benefit in cancer. Hematology Am Soc Hematol Educ Program 2005:226–230. https://doi.org/10.1182/asheducation-2005.1.226
Silva D, Yu S, Ulge UY et al (2019) De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565:186–191. https://doi.org/10.1038/s41586-018-0830-7
Sinha D, Chowdhury D, Vino S (2012) Monoclonal antibodies (mAbs): the latest dimension of modern therapeutics. Int J Curr Sci 2:9–23
Song X, Lu L, Passioura T (2017) Macrocyclic peptide inhibitors for the protein–protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5. Org Biomol Chem 15:5155–5160. https://doi.org/10.1039/c7ob00012j
Soucy TA, Smith PG, Milhollen MA et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–736. https://doi.org/10.1038/nature07884
Souers AJ, Leverson JD, Boghaert ER et al (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19:202–208. https://doi.org/10.1038/nm.3048
Stanton BZ, Peng LF, Maloof N et al (2009) A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 5:154–156. https://doi.org/10.1038/nchembio.142
Stevers LM, Sijbesma E, Botta M et al (2018) Modulators of 14-3-3 protein-protein interactions. J Med Chem 61:3755–3778. https://doi.org/10.1021/acs.jmedchem.7b00574
Susanto JP (2015) The role of Eltrombopag and Romiplostim as the thrombopoietin receptor agonist (TPO-RA) in treatment of idiopathic thrombocytopenic purpura (ITP): what is TPO-RA, when TPO-RA is used and how to take TPO-RA? Folia Medica Indonesiana 51:203–207. https://doi.org/10.20473/fmi.v51i3.2840
Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215. https://doi.org/10.1186/gb-2007-8-5-215
Taylor IR, Dunyak BM, Komiyama T et al (2018) High throughput screen for inhibitors of protein-protein interactions in a reconstituted heat shock protein 70 (Hsp70) complex. J Biol Chem 293:4014–4025. https://doi.org/10.1074/jbc.RA117.001575jbc.RA117.001575
Tian SS, Lamb P, King AG et al (1998) A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor. Science 281:257–259. https://doi.org/10.1126/science.281.5374.257
Tse C, Shoemaker AR, Adickes J et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428. https://doi.org/10.1158/0008-5472.CAN-07-5836
Trinh PNH, May LT, Leach K et al (2018) Biased agonism and allosteric modulation of metabotropic glutamate receptor 5. Clin Sci 132:2323–2338. https://doi.org/10.1042/CS20180374
Ubanako PN, Choene M, Motadi L (2015) Mechanisms of apoptosis in ovarian cancer: the small molecule targeting. Int J Med Med Sci 7:46–60. https://doi.org/10.5897/IJMMS2014.1081
Varshavsky A (2017) The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem 86:123–128. https://doi.org/10.1146/annurev-biochem-061516-044859
Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848. https://doi.org/10.1126/science.1092472
Venkata Narasimha Rao G, Ravi B, Sunil Kumar M et al (2017) Ultra performance liquid chromatographic method for simultaneous quantification of plerixafor and related substances in an injection formulation. Cogent Chemistry 3:1275955. https://doi.org/10.1080/23312009.2016.1275955
Verhoork SJM, Jennings CE, Rozatian N (2019) Tuning the binding affinity and selectivity of perfluoroaryl-stapled peptides by cysteine-editing. Chemistry 25:177–182. https://doi.org/10.1002/chem.201804163
Walensky LD, Kung AL, Escher I et al (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470. https://doi.org/10.1126/science.1099191
Walensky LD, Korsmeyer SJ, Verdine G (2010) Stabilized alpha helical peptides and uses thereof. United States Patent Number 7:469 https://patents.google.com/patent/US7723469B2/en . Accessed 24 Mar 2019
Wan H (2016) An overall comparison of small molecules and large biologics in ADME testing. ADMET & DMPK 4:1–22. https://doi.org/10.5599/admet.4.1.276
Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450:1001–1009. https://doi.org/10.1038/nature06526
Wertz IE, Wang X (2019) From discovery to bedside: targeting the ubiquitin system. Cell Chem Biol 26(2):156–177. https://doi.org/10.1016/j.chembiol.2018.10.022
Wilson CG, Arkin MR (2011) Small-molecule inhibitors of IL-2/IL-2R: lessons learned and applied. Curr Top Microbiol Immunol 348:25–59. https://doi.org/10.1007/82_2010_93
Wyllie AH (2010) “Where, O death, is thy sting?” A brief review of apoptosis biology Mol Neurobiol 42:4–9. https://doi.org/10.1007/s12035-010-8125-5
Xu GG, Guo J, Wu Y (2014) Chemokine receptor CCR5 antagonist maraviroc: medicinal chemistry and clinical applications. Curr Top Med Chem 13:1504–1514. https://doi.org/10.2174/1568026614666140827143745
Yan M, Li G, An J (2017) Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions. Exp Biol Med 242:1185–1197. https://doi.org/10.1177/1535370217708198
Yasui T, Yamamoto T, Sakai N et al (2017) Discovery of a novel B-cell lymphoma 6 (BCL6)–corepressor interaction inhibitor by utilizing structure-based drug design. Bioorg Med Chem 25:4876–4886. https://doi.org/10.1016/j.bmc.2017.07.037
Yu M, Wang C, Kyle AF et al (2011) Synthesis of macrocyclic natural products by catalysts-controlled stereoselective ring-closing metathesis. Nature 479:88–93. https://doi.org/10.1038/nature10563
Zaba LC, Fuentes-Duculan J, Eungdamrong NJ et al (2010) Identification of TNF-related apoptosis inducing ligand and other molecules that distinguish inflammatory from resident dendritic cells in patients with psoriasis. J Allergy Clin Immunol 125:1261–1268. https://doi.org/10.1016/j.jaci.2010.03.018
Zhang G, Andersen J, Gerona-Navarro G (2018) Peptidomimetics targeting protein-protein interactions for therapeutic development. Protein Pept Lett 25:1076–1089. https://doi.org/10.2174/0929866525666181101100842
Zhao F, Liu W, Yue S et al (2019) Pre-treatment with G-CSF could enhance the antifibrotic effect of BM-MSCs on pulmonary fibrosis. Stem Cells Int 2019:1726743. https://doi.org/10.1155/2019/1726743
Zhong M, Gadek TR, Bui M (2012) Discovery and development of potent LFA-1/ICAM-1 antagonist SAR 1118 as an ophthalmic solution for treating dry eye. ACS Med Chem Lett 3:203–206. https://doi.org/10.1021/ml2002482