Phân tích mạng tương tác protein-protein (PPI) tiết lộ các protein trung tâm quan trọng và các mô-đun mạng con cho sự phát triển rễ ở lúa (Oryza sativa)

Samadhi S. Wimalagunasekara1, Janith W. J. K. Weeraman1, Shamala Tirimanne1, Pasan C. Fernando1
1Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka

Tóm tắt

Hệ thống rễ là một yếu tố sống còn đối với sự phát triển và tồn tại của cây. Do đó, việc cải thiện gen của hệ thống rễ có lợi cho việc phát triển các giống cây trồng chịu stress và được cải thiện. Điều này yêu cầu xác định các protein có vai trò đáng kể trong sự phát triển của rễ. Phân tích mạng tương tác protein-protein (PPI) rất hữu ích trong việc nghiên cứu các kiểu hình phát triển, chẳng hạn như sự phát triển của rễ, vì kiểu hình là kết quả của nhiều protein tương tác. Các mạng PPI có thể được phân tích để xác định các mô-đun và có được cái nhìn tổng quát về các protein quan trọng điều chỉnh các kiểu hình. Phân tích mạng PPI cho sự phát triển của rễ ở lúa chưa được thực hiện trước đây và có tiềm năng tạo ra những phát hiện mới để cải thiện khả năng chịu stress. Ở đây, mô-đun mạng cho sự phát triển rễ đã được trích xuất từ mạng PPI toàn cầu của Oryza sativa được lấy từ cơ sở dữ liệu STRING. Các ứng cử viên protein mới đã được dự đoán, và các protein trung tâm cùng các mô-đun phụ đã được xác định từ mô-đun đã trích xuất. Việc xác thực các dự đoán cho thấy 75 protein ứng cử viên mới, 6 mô-đun phụ, 20 protein trung tâm trong mô-đun, và 2 protein trung tâm giữa các mô-đun. Những kết quả này cho thấy cách mà mô-đun mạng PPI được tổ chức cho sự phát triển rễ và có thể được sử dụng cho các nghiên cứu thực nghiệm trong tương lai nhằm tạo ra các giống lúa được cải thiện.

Từ khóa

#mạng PPI #protein trung tâm #phát triển rễ #lúa #Oryza sativa

Tài liệu tham khảo

Dixit S, Singh A, Kumar A (2014) Rice breeding for high grain yield under drought: a strategic solution to a complex problem. Int J Agron 2014:1–5 Khan S, Javed MA, Jahan N, Manan FA (2016) A short review on the development of salt tolerant cultivars in rice. Int J Public Health Sci 5:201–212 Rabello AR, Guimarães CM, Rangel PH, da Silva FR, Seixas D, de Souza E, Brasileiro AC, Spehar CR, Ferreira ME, Mehta  (2008) Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics 9:485. https://doi.org/10.1186/1471-2164-9-485 Meng F, Xiang D, Zhu J, Li Y, Mao C (2019) Molecular mechanisms of root development in rice. Rice 12:1. https://doi.org/10.1186/s12284-018-0262-x Shoemaker BA, Panchenko AR (2007) Deciphering protein–protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 3:e42 Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci 100:12123–12128 Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–8. https://doi.org/10.1093/nar/gkw937. Wang X, Gulbahce N, Yu H (2011) Network-based methods for human disease gene prediction. Brief Funct Genomics 10:280–293. https://doi.org/10.1093/bfgp/elr024 Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Von Mering C (2012) STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815 Von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437 Fernando SPC (2018) Investigating evolutionary phenotypic transitions using integrative biological network frameworks. University of South Dakota. https://www.proquest.com/openview/8dc3742ab689ea9eea93ee7a14cace6d/1?pq-10.1186/s43141-023-00515-8 Fernando PC, Mabee PM, Zeng E (2020) Integration of anatomy ontology data with protein–protein interaction networks improves the candidate gene prediction accuracy for anatomical entities. BMC Bioinformatics 21:442. https://doi.org/10.1186/s12859-020-03773-2 Ekman D, Light S, Björklund ÅK, Elofsson A (2006) What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol 7:R45. https://doi.org/10.1186/gb-2006-7-6-r45 Hishigaki H, Nakai K, Ono T, Tanigami A, Takagi T (2001) Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18:523–531 Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3:88 Saini A, Hou J (2013) Progressive clustering based method for protein function prediction. Bull Math Biol 75:331–350 Deng M, Zhang K, Mehta S, Chen T, Sun F. Prediction of Protein Function Using Protein–Protein Interaction Data. J Comput Biol 2003;10:947–60. https://doi.org/10.1089/106652703322756168 Park D, Singh R, Baym M, Liao C-S, Berger B (2010) IsoBase: a database of functionally related proteins across PPI networks. Nucleic Acids Res 39:D295–D300 Lan W, Wang J, Li M, Peng W, Wu F (2015) Computational approaches for prioritizing candidate disease genes based on PPI networks. Tsinghua Sci Technol 20:500–512 Park S-J, Choi J-S, Kim B-C, Jho S-W, Ryu J-W, Park D, et al. PutidaNET: Interactome database service and network analysis of Pseudomonas putida KT2440. BMC Genomics 2009;10:S18. https://doi.org/10.1186/1471-2164-10-S3-S18 Kiran M, Nagarajaram HA (2016) Interaction and localization diversities of global and local hubs in human protein–protein interaction networks. Mol BioSyst 12:2875–2882 Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430:88–93 Chang X, Xu T, Li Y, Wang K (2013) Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of ‘date’and ‘party’hubs. Sci Rep 3:1691 Liu J, Jing L, Tu X (2016) Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease. BMC Cardiovasc Disord 16:54 Apic G, Ignjatovic T, Boyer S, Russell RB (2005) Illuminating drug discovery with biological pathways. FEBS Lett 579:1872–1877. https://doi.org/10.1016/j.febslet.2005.02.023 Liseron-Monfils C, Ware D (2015) Revealing gene regulation and associations through biological networks. Curr Plant Biol 3–4:30–39. https://doi.org/10.1016/j.cpb.2015.11.001 Albert R (2007) Network inference, analysis, and modeling in systems biology. Plant Cell 19:3327–3338. https://doi.org/10.1105/tpc.107.054700 Winterbach W, Mieghem PV, Reinders M, Wang H, de Ridder D (2013) Topology of molecular interaction networks. BMC Syst Biol 7:90. https://doi.org/10.1186/1752-0509-7-90 Gustafsson M, Nestor CE, Zhang H, Barabási A-L, Baranzini S, Brunak S, Chung KF, Federoff HJ, Gavin A-C, Meehan RR, Picotti P, Pujana MÁ, Rajewsky N, Smith KG, Sterk PJ, Villoslada P, Benson M (2014) Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med 6:82. https://doi.org/10.1186/s13073-014-0082-6 Liu W, Wu A, Pellegrini M, Wang X (2015) Integrative analysis of human protein, function and disease networks. Sci Rep 5:14344. https://doi.org/10.1038/srep14344 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504 Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432 Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57 Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, Bader GD, Ferrin TE (2011) clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 12:436 Fan W, Ye G (2018) Microarray analysis for the identification of specific proteins and functional modules involved in the process of hepatocellular carcinoma originating from cirrhotic liver. Mol Med Rep 17:5619–5626 Wang H, Niu Q-W, Wu H-W, Liu J, Ye J, Yu N, Chua N-H (2015) Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lnc RNA s associated with agriculture traits. Plant J 84:404–416 Leyser O (2018) Auxin signaling. Plant Physiol 176:465–479 Takatsuka H, Umeda M (2014) Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot 65:2633–2643 Kieber JJ, Schaller GE (2018) Cytokinin signaling in plant development. Development 145:dev149344 Zheng H, Chen J (2011) Emerging aspects of ER organization in root hair tip growth: lessons from RHD3 and Atlastin. Plant Signal Behav 6:1710–1713 Chen J, Stefano G, Brandizzi F, Zheng H (2011) Arabidopsis RHD3 mediates the generation of the tubular ER network and is required for Golgi distribution and motility in plant cells. J Cell Sci 124:2241–2252 Wang H, Lockwood SK, Hoeltzel MF, Schiefelbein JW (1997) The ROOT HAIR DEFECTIVE3 gene encodes an evolutionarily conserved protein with GTP-binding motifs and is required for regulated cell enlargement in Arabidopsis. Genes Dev 11:799–811 Chen Y, Fan X, Song W, Zhang Y, Xu G (2012) Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J 10:139–149 Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, Sturrock CJ, Yu H, Lu C, Peng J (2018) LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot 69:385–397 Miyashita Y, Takasugi T, Ito Y (2010) Identification and expression analysis of PIN genes in rice. Plant Sci 178:424–428 Inahashi H, Shelley IJ, Yamauchi T, Nishiuchi S, Takahashi-Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y (2018) OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant 164:216–225 Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z (2012) The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J 72:805–816 Xu M, Zhu L, Shou H, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674–1681 Heyl A, Schmülling T (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol 6:480–488 Müller B, Sheen J (2007) Advances in cytokinin signaling. Science 318:68–69 Du L, Jiao F, Chu J, Jin G, Chen M, Wu P (2007) The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction. Genomics 89:697–707 Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1, 4-β-glucanase and cellulose-binding domains. Biomol Eng 19:17–30 Yoshida K, Imaizumi N, Kaneko S, Kawagoe Y, Tagiri A, Tanaka H, Nishitani K, Komae K (2006) Carbohydrate-binding module of a rice endo-β-1, 4-glycanase, OsCel9A, expressed in auxin-induced lateral root primordia, is post-translationally truncated. Plant Cell Physiol 47:1555–1571 Zhou H-L, He S-J, Cao Y-R, Chen T, Du B-X, Chu C-C, Zhang J-S, Chen S-Y (2006) OsGLU1, a putative membrane-bound endo-1, 4-ß-d-glucanase from rice, affects plant internode elongation. Plant Mol Biol 60:137–151 Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248:71–83 Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 99:13324–13329 Huang J, Kim CM, Xuan Y, Liu J, Kim TH, Kim B-K, Han C (2013) Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). Planta 237:1227–1239 Huang J, Liu J, Han C (2013) Formin homology 1 (OsFH1) regulates submergence-dependent root hair development in rice plants. Plant Signal Behav 8:1227–1239 Ma N, Wang Y, Qiu S, Kang Z, Che S, Wang G, Huang J (2013) Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS One 8(10):e75997 Wang Y, Ma N, Qiu S, Zou H, Zang G, Kang Z, Wang G, Huang J (2014) Regulation of the α-expansin gene OsEXPA8 expression affects root system architecture in transgenic rice plants. Mol Breed 34:47–57 Flórez AF, Park D, Bhak J, Kim B-C, Kuchinsky A, Morris JH, Espinosa J, Muskus C (2010) Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinformatics 11:484. https://doi.org/10.1186/1471-2105-11-484 Oikawa T, Kyozuka J (2009) Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21:1095–1108 Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H (2011) LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23:3276–3287 Mao C, Wang S, Jia Q, Wu P (2006) OsEIL1, a rice homolog of the Arabidopsis EIN3 regulates the ethylene response as a positive component. Plant Mol Biol 61:141 Lin W-Z, Fang J-A, Xiao X, Chou K-C (2011) iDNA-Prot: identification of DNA binding proteins using random forest with grey model. PLoS One 6(9):e24756 Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097 Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y (2014) Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields Scientific Reports 4(1). https://doi.org/10.1038/srep05563