Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications

Materials Today - Tập 66 - Trang 159-193 - 2023
Iman Zare1, Daniel M. Chevrier2, Anna Cifuentes-Rius3, Nasrin Moradi4, Yunlei Xianyu5, Subhadip Ghosh6,7, Laura Trapiella-Alfonso8, Ye Tian9, Alireza Shourangiz-Haghighi10, Saptarshi Mukherjee11, Kelong Fan12,13, Michael R. Hamblin14
1Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan 35131-19111, Iran
2Aix-Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul lez Durance, France
3Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia
4Department of Chemistry, Tarbiat Modares University, Tehran 14115 175, Iran
5College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
6Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
7Department of Chemistry, The Pennsylvania State University University Park, PA 16802 USA
8Chimie ParisTech, PSL University, CNRS 2027, Institute of Chemistry for Life and Health Sciences, SEISAD, 11 rue Pierre et Marie Curie, 75005 Paris, France
9Department of Chemistry Stanford University Stanford USA
10Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran
11Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
12CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
13Academy of Medical Sciences, Zhengzhou University, 40 N Daxue Road, Zhengzhou 450052, China
14Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa

Tài liệu tham khảo

Jin, 2016, Chem. Rev., 116, 10346, 10.1021/acs.chemrev.5b00703 Tao, 2015, Chem. Soc. Rev., 44, 8636, 10.1039/C5CS00607D Shiang, 2012, J. Mater. Chem., 22, 12972, 10.1039/c2jm30563a Cui, 2014, TrAC, Trends Anal. Chem., 57, 73, 10.1016/j.trac.2014.02.005 Li, 2014, TrAC, Trends Anal. Chem., 58, 90, 10.1016/j.trac.2014.02.011 Chakraborty, 2017, Chem. Rev. Taylor, 2017, Nat. Commun., 8, 15988, 10.1038/ncomms15988 Deraedt, 2017, Nano Lett., 17, 1853, 10.1021/acs.nanolett.6b05156 Jin, 2010, Nanoscale, 2, 343, 10.1039/B9NR00160C Kim, 2014, Chem. Mater., 26, 59, 10.1021/cm402225z Zhang, 2014, Nano Today, 9, 132, 10.1016/j.nantod.2014.02.010 X.-D. Zhang, et al., Sci. Rep. (2015) 8669. Zhang, 2014, Adv. Healthcare Mater., 3, 133, 10.1002/adhm.201300189 Yuan, 2013, Chemistry, 8, 858 Schmid, 1999, Chem. Soc. Rev., 28, 179, 10.1039/a801153b Dickerson, 2008, Chem. Rev., 108, 4935, 10.1021/cr8002328 Goswami, 2014, Nanoscale, 6, 13328, 10.1039/C4NR04561K Crookes-Goodson, 2008, Chem. Soc. Rev., 37, 2403, 10.1039/b702825n Bönnemann, 2001, Eur. J. Inorg. Chem., 2001, 2455, 10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z Li, 2017, Sens. Actuators, B, 241, 1057, 10.1016/j.snb.2016.10.036 Thyrhaug, 2017, Nat. Commun., 8, 15577, 10.1038/ncomms15577 Kumar, 2014, Chem. Rev., 114, 7044, 10.1021/cr4007285 Yu, 2014, Chem. Commun., 50, 13805, 10.1039/C4CC06914E Zhou, 2015, Chem. Rev., 115, 11669, 10.1021/acs.chemrev.5b00049 Xie, 2009, J. Am. Chem. Soc., 131, 888, 10.1021/ja806804u Chen, 2015, ACS Nano, 9, 2173, 10.1021/acsnano.5b00141 Dutta, 2016, ACS Biomater. Sci. Eng., 2, 2090, 10.1021/acsbiomaterials.6b00517 Shamsipur, 2015, Microchim. Acta, 182, 1131, 10.1007/s00604-014-1428-x Wang, 2014, Nanoscale, 6, 1775, 10.1039/C3NR04835G Sarparast, 2016, Nano Res., 1 Liu, 2013, Anal. Chem., 85, 3238, 10.1021/ac303603f Shao, 2011, J. Mater. Chem., 21, 2863, 10.1039/c0jm04071a He, 2017, Colloids Surf., A, 518, 80, 10.1016/j.colsurfa.2017.01.018 Xavier Le, 2011, Nanotechnology, 22 West, 2016, ACS Appl. Mater. Interfaces, 8, 21221, 10.1021/acsami.6b06624 Gao, 2014, Sci. Rep., 4, 4384, 10.1038/srep04384 Chen, 2015, ACS Appl. Mater. Interfaces, 7, 18163, 10.1021/acsami.5b05805 Su, 2015, Chin. Chem. Lett., 26, 1400, 10.1016/j.cclet.2015.07.021 Kurdekar, 2020, Nanoscale Adv., 2, 304, 10.1039/C9NA00503J Heo, 2019, ACS Appl. Mater. Interfaces, 11, 19669, 10.1021/acsami.8b22752 Croissant, 2016, J. Control. Release, 229, 183, 10.1016/j.jconrel.2016.03.030 Lv, 2020, Anal. Chim. Acta Loynachan, 2019, Nat. Nanotechnol., 14, 883, 10.1038/s41565-019-0527-6 Xavier, 2012, Nano Rev., 3, 1, 10.3402/nano.v3i0.14767 Yu, 2016, Adv. Healthcare Mater., 5, 1844, 10.1002/adhm.201600192 Hu, 2015, Isr. J. Chem., 55, 682, 10.1002/ijch.201400178 Tan, 2013, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5, 569, 10.1002/wnan.1237 Liu, 2014, TrAC, Trends Anal. Chem., 58, 99, 10.1016/j.trac.2013.12.014 Zhao, 2015, J. Environ. Sci. Health, Part C, 33, 168, 10.1080/10590501.2015.1030490 Voet, 2017, Curr. Opin. Biotechnol., 46, 14, 10.1016/j.copbio.2016.10.015 Zhao, 2019, Part. Part. Syst. Char., 36, 1900298, 10.1002/ppsc.201900298 Zhao, 2019, Method. Appl. Fluoresc., 8, 10.1088/2050-6120/ab57e7 Porret, 2020, J. Mater. Chem. B, 8, 2216, 10.1039/C9TB02767J Meng, 2020, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 12, 10.1002/wnan.1602 Kumar, 2020, Anal. Methods, 12, 1809, 10.1039/D0AY00157K Liu, 2018, Chem. Rev., 118, 4981, 10.1021/acs.chemrev.7b00776 Ivleva, 2020, Mater. Des. de Souza, N., 2007. Nat. Methods, 4(7), 540–540. Shang, 2012, Nano Res., 5, 531, 10.1007/s12274-012-0238-x Meziani, 2002, J. Phys. Chem. B, 106, 11178, 10.1021/jp0212747 Matulionyte, 2017, Int. J. Mol. Sci., 18, 378, 10.3390/ijms18020378 Dutta, 2017, Chem. Commun., 53, 1277, 10.1039/C6CC09092C Shang, 2011, Nano Today, 6, 401, 10.1016/j.nantod.2011.06.004 Tan, 2010, J. Am. Chem. Soc., 132, 5677, 10.1021/ja907454f Yue, 2012, Nanoscale., 4, 2251, 10.1039/c2nr12056a Ghosh, 2017, J. Phys. Chem. C, 121, 13335, 10.1021/acs.jpcc.7b02436 Ghosh, 2019, J. Phys. Chem. C, 123, 17598, 10.1021/acs.jpcc.9b04009 Ghosh, 2019, J. Phys. Chem. C, 123, 29408, 10.1021/acs.jpcc.9b07765 Zheng, 2007, Annu. Rev. Phys. Chem., 58, 409, 10.1146/annurev.physchem.58.032806.104546 Yam, 2015, Chem. Rev., 115, 7589, 10.1021/acs.chemrev.5b00074 Xu, 2016, Nanotechnology, 27 Kawasaki, 2011, Adv. Funct. Mater., 21, 3508, 10.1002/adfm.201100886 Chen, 2013, J. Colloid Interface Sci., 396, 63, 10.1016/j.jcis.2013.01.031 Chaudhari, 2011, ACS Nano, 5, 8816, 10.1021/nn202901a Mohanty, 2012, Nanoscale, 4, 4255, 10.1039/c2nr30729d Mohanty, 2019, J. Phys. Chem. C, 123, 28969, 10.1021/acs.jpcc.9b07370 Wang, 2014, Angew. Chem. Int. Ed., 53, 2376, 10.1002/anie.201307480 Guo, 2011, Anal. Chem., 83, 2883, 10.1021/ac1032403 Ghosh, 2014, ACS Appl. Mater. Interfaces, 6, 3822, 10.1021/am500040t Goswami, 2016, J. Phys. Chem. Lett., 7, 962, 10.1021/acs.jpclett.5b02765 Chevrier, 2018, Chem. Sci., 9, 2782, 10.1039/C7SC05086K Yamauchi, 2002, J. Chem. Soc., Dalton Trans., 3411, 10.1039/B202385G Dixon, 2018, J. Am. Chem. Soc., 140, 2265, 10.1021/jacs.7b11712 B. Maity, et al., Nat. commun. 8 (2017) 14820. Kundu, 2017, J. Phys. Chem. Lett., 8, 2291, 10.1021/acs.jpclett.7b00600 Zhang, 2012, Biomaterials, 33, 4628, 10.1016/j.biomaterials.2012.03.020 Dong, 2015, Small, 11, 2571, 10.1002/smll.201403481 Soleilhac, 2018, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 193, 283, 10.1016/j.saa.2017.12.025 Wu, 2010, Nano Lett., 10, 2568, 10.1021/nl101225f Shamsipur, 2018, ACS Sustainable Chem. Eng., 6, 11123, 10.1021/acssuschemeng.8b02674 Yarramala, 2017, ACS Sustainable Chem. Eng., 5, 6064, 10.1021/acssuschemeng.7b00958 Wang, 2017, New J. Chem., 41, 3766, 10.1039/C7NJ00642J Habeeb Muhammed, 2010, Eur. J., 16, 10103, 10.1002/chem.201000841 Yang, 2017, Sens. Actuators, B, 251, 773, 10.1016/j.snb.2017.05.019 Fan, 2018, ACS Sensors, 3, 441, 10.1021/acssensors.7b00874 Liu, 2011, Chem. Commun., 47, 4237, 10.1039/c1cc00103e Kumar Das, 2018, ChemPhysChem, 19, 2218, 10.1002/cphc.201800332 Zhu, 2008, J. Am. Chem. Soc., 130, 5883, 10.1021/ja801173r Weerawardene, 2016, J. Am. Chem. Soc., 138, 11202, 10.1021/jacs.6b05293 Wen, 2012, J. Phys. Chem. C, 116, 19032, 10.1021/jp305902w Wen, 2012, J. Phys. Chem. C, 116, 11830, 10.1021/jp303530h Zheng, 2004, Phys. Rev. Lett., 93 Zheng, 2012, Nanoscale, 4, 4073, 10.1039/c2nr31192e Stamplecoskie, 2014, J. Phys. Chem. C, 118, 1370, 10.1021/jp410856h Ghosh, 2015, J. Phys. Chem. Lett., 6, 1293, 10.1021/acs.jpclett.5b00378 Goswami, 2011, Anal. Chem., 83, 9676, 10.1021/ac202610e Yu, 2014, Nanoscale, 6, 9618, 10.1039/C3NR06896J Mathew, 2011, J. Mater. Chem., 21, 11205, 10.1039/c1jm11452b Liu, 2011, Angew. Chem. Int. Ed., 50, 7056, 10.1002/anie.201100299 Le Guével, 2011, J. Phys. Chem. C, 115, 10955, 10.1021/jp111820b Wei, 2010, Analyst, 135, 1406, 10.1039/c0an00046a Lin, 2010, Anal. Chem., 82, 9194, 10.1021/ac101427y Lin, 2012, Analyst, 137, 2394, 10.1039/c2an35068h Hu, 2010, Analyst, 135, 1411, 10.1039/c000589d Xie, 2010, Chem. Commun., 46, 961, 10.1039/B920748A Alkudaisi, 2019, J. Mater. Chem. B, 7, 1167, 10.1039/C9TB00009G Zhang, 2013, J. Phys. Chem. C, 117, 639, 10.1021/jp309175k Wen, 2011, Anal. Chem., 83, 1193, 10.1021/ac1031447 Liu, 2010, Adv. Funct. Mater., 20, 951, 10.1002/adfm.200902062 Selvaprakash, 2014, Biosens. Bioelectron., 61, 88, 10.1016/j.bios.2014.04.055 Deng, 1999, Mater. Manuf. Processes, 14, 623, 10.1080/10426919908907570 Sapsford, 2008, Mater. Today, 11, 38, 10.1016/S1369-7021(08)70018-X De, 2008, Adv. Mater., 20, 4225, 10.1002/adma.200703183 Thomas, 2007, Chem. Rev., 107, 1339, 10.1021/cr0501339 Anker, 2008, Nat. Mater., 7, 442, 10.1038/nmat2162 Vella, F. Principles of bioinorganic chemistry: By S J Lippard and J M Berg. pp 411. University Science Books, Mill Valley, California. 1994. $30 ISBN 0-935702-73-3 (paper). Biochemical Education 1995, 23, 115-115. Brathwaite, 1985, J. R. Soc. New Zealand, 15, 363, 10.1080/03036758.1985.10421713 Chen, 2015, Anal. Chem., 87, 216, 10.1021/ac503636j Ghosh, 2015 Bray, 2018, CA Cancer J. Clin., 68, 394, 10.3322/caac.21492 Golubnitschaja, 2007, Surv. Ophthalmol., 52, S155, 10.1016/j.survophthal.2007.08.011 Sawyers, 2008, Nature, 452, 548, 10.1038/nature06913 Zhou, 2018, Anal. Chem., 90, 10024, 10.1021/acs.analchem.8b02642 Peng, 2012, Eur. J., 18, 5261, 10.1002/chem.201102876 Wang, 2011, Biosens. Bioelectron., 26, 3614, 10.1016/j.bios.2011.02.014 Tao, 2013, Biosens. Bioelectron., 42, 41, 10.1016/j.bios.2012.10.014 Tao, 2013, Adv. Mater., 25, 2594, 10.1002/adma.201204419 Tao, 2017, Theranostics, 7, 899, 10.7150/thno.17927 Retnakumari, 2009, Nanotechnology, 21 Xu, 2018, Microchim. Acta, 185, 198, 10.1007/s00604-018-2734-5 Chinen, 2015, Chem. Rev., 115, 10530, 10.1021/acs.chemrev.5b00321 Mousavi, 2017, Electroanalysis, 29, 861, 10.1002/elan.201600537 Lushchak, 2012, J. Amino Acids, 2012, 26, 10.1155/2012/736837 Bhamore, 2019, Sens. Actuators, B, 281, 812, 10.1016/j.snb.2018.11.001 Chen, 2012, Small, 8, 1912, 10.1002/smll.201102741 Lin, 2013, Biosens. Bioelectron., 41, 256, 10.1016/j.bios.2012.08.030 Mathew, 2017, ACS Sustainable Chem. Eng., 5, 4837, 10.1021/acssuschemeng.7b00273 B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The molecular mechanisms of membrane transport and the maintenance of compartmental diversity, in: Molecular Biology of the Cell. 4th Ed. 2002. Garland Science. Mita, 2019, Anal. Chem., 91, 4821, 10.1021/acs.analchem.9b00447 Yoo, 2010, Sensors, 10, 4558, 10.3390/s100504558 Jin, 2011, Biosens. Bioelectron., 26, 1965, 10.1016/j.bios.2010.08.019 Wang, 2015, RSC Adv., 5, 101599, 10.1039/C5RA19421K Brzezicka, 2018, Nanoscale Res. Lett., 13, 360, 10.1186/s11671-018-2772-2 Ahlfors, 2004, Semin. Perinatol., 28, 334, 10.1053/j.semperi.2004.09.002 Jayasree, 2018, Anal. Chim. Acta, 1031, 152, 10.1016/j.aca.2018.05.026 Santhosh, 2014, Biosens. Bioelectron., 59, 370, 10.1016/j.bios.2014.04.003 Muñoz-Bustos, 2017, Sens. Actuators, B, 244, 922, 10.1016/j.snb.2017.01.071 Li, 2019, Talanta, 195, 372, 10.1016/j.talanta.2018.11.067 Selvaprakash, 2017, Biosens. Bioelectron., 92, 410, 10.1016/j.bios.2016.10.086 Shamsipur, 2016, Anal. Chem., 88, 2188, 10.1021/acs.analchem.5b03824 Ghosh, 2015, J. Phys. Chem. C, 119, 10776, 10.1021/acs.jpcc.5b03594 Griep, 2020, Plasmonics, 2, 1 Chen, 2012, Talanta, 94, 240, 10.1016/j.talanta.2012.03.033 Aswathy, 2014, Microchem. J., 116, 151, 10.1016/j.microc.2014.04.016 Chen, 2018, Anal. Chim. Acta, 1026, 133, 10.1016/j.aca.2018.04.014 Wang, 2018, Talanta, 178, 1006, 10.1016/j.talanta.2017.08.102 Cao, 2015, Anal. Chim. Acta, 871, 43, 10.1016/j.aca.2015.02.031 Meng, 2017, Anal. Methods, 9, 768, 10.1039/C6AY03280J Yan, 2018, ACS Sustainable Chem. Eng., 6, 4504, 10.1021/acssuschemeng.8b00112 Jaishankar, 2014, Interdiscip. Toxicol., 7, 60, 10.2478/intox-2014-0009 Zhang, 2017, Sens. Actuators, B, 238, 683, 10.1016/j.snb.2016.07.118 Zhang, 2016, Nano Today, 11, 309, 10.1016/j.nantod.2016.05.010 Li, 2017, Analyst, 142, 567, 10.1039/C6AN02112C H. Kawasaki, et al. Anal. Sci., 27 (2011), 591-591. Zang, 2016, Anal. Chem., 88, 10275, 10.1021/acs.analchem.6b03011 Xu, 2015, Microchim. Acta, 182, 2577, 10.1007/s00604-015-1613-6 Wang, 2018, Sens. Actuators, B, 267, 342, 10.1016/j.snb.2018.04.034 Ding, 2015, Anal. Methods, 7, 5787, 10.1039/C5AY01112D Sanders, 2009, Rev. Environ. Health, 24, 15, 10.1515/REVEH.2009.24.1.15 Gaetke, 2003, Toxicology, 189, 147, 10.1016/S0300-483X(03)00159-8 Mayr, 2002, Anal. Chim. Acta, 462, 1, 10.1016/S0003-2670(02)00234-9 Letelier, 2005, Chem. Biol. Interact., 151, 71, 10.1016/j.cbi.2004.12.004 Yang, 2013, J. Mater. Chem. C, 1, 6748, 10.1039/c3tc31398k Ghosh, 2014, Anal. Chem., 86, 3188, 10.1021/ac500122v Akshath, 2020, J. Fluoresc., 17, 1 Liu, 2015, Biosens. Bioelectron., 74, 322, 10.1016/j.bios.2015.06.034 Huang, 2018, Microchim. Acta, 185, 1, 10.1007/s00604-017-2562-z Lu, 2014, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 121, 77, 10.1016/j.saa.2013.10.009 Zhang, 2019, Sens. Actuators, B, 279, 361, 10.1016/j.snb.2018.09.100 Cui, 2013, Sens. Actuators, B, 188, 53, 10.1016/j.snb.2013.05.098 Zhang, 2013, Chem. Commun., 49, 2691, 10.1039/c3cc38298b Liu, 2016, Anal. Chem., 88, 10631, 10.1021/acs.analchem.6b02995 Biswas, 2017, ACS Omega, 2, 2499, 10.1021/acsomega.7b00199 Shen, 2018, Anal. Chem., 90, 4478, 10.1021/acs.analchem.7b04798 Liu, 2015, Anal. Chim. Acta, 886, 151, 10.1016/j.aca.2015.07.001 Ju, 2018, Sens. Actuators, B, 275, 244, 10.1016/j.snb.2018.08.052 Lee, 2016, RSC Adv., 6, 79020, 10.1039/C6RA16043C Okabe, 2012, Nat. Commun., 3, 705, 10.1038/ncomms1714 Wang, 2015, Nano Res., 8, 1975, 10.1007/s12274-015-0707-0 Jaque, 2012, Nanoscale, 4, 4301, 10.1039/c2nr30764b Chen, 2014, Nanoscale, 6, 9594, 10.1039/C4NR02069C Lan, 2015, Talanta, 143, 469, 10.1016/j.talanta.2015.05.042 Tian, 2017, Talanta, 170, 530, 10.1016/j.talanta.2017.03.107 Roos, 1981, Physiol. Rev., 61, 296, 10.1152/physrev.1981.61.2.296 Wang, 2014, Analyst, 139, 2990, 10.1039/C4AN00113C Zhang, 2016, J. Mater. Chem. C, 4, 3540, 10.1039/C6TC00314A Qiao, 2015, Sens. Actuators, B, 220, 1064, 10.1016/j.snb.2015.06.073 Miao, 2018, New J. Chem., 42, 1446, 10.1039/C7NJ03524A Xiong, 2017, Sens. Actuators, B, 239, 988, 10.1016/j.snb.2016.08.114 Ali, 2017, Microchim. Acta, 184, 3309, 10.1007/s00604-017-2352-7 Wu, 2016, Nanoscale, 8, 11210, 10.1039/C6NR02341J Wei, 2019, Part. Part. Syst. Char., 36 S. Govindaraju, et al. Sci. Rep. 2017, 7, 40298-40298. Govindaraju, 2019, Appl. Surf. Sci., 498, 10.1016/j.apsusc.2019.143837 Li, 2014, Analyst, 139, 285, 10.1039/C3AN01736B Sha, 2019, Sens. Actuators, B, 294, 177, 10.1016/j.snb.2019.05.060 He, 2012, Analyst, 137, 4005, 10.1039/c2an35712g Yang, 2016, Talanta, 154, 190, 10.1016/j.talanta.2016.03.066 Ghosh, 2019, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 215, 209, 10.1016/j.saa.2019.02.078 Li, 2017, Microchim. Acta, 184, 3539, 10.1007/s00604-017-2374-1 Aparna, 2019, J. Photochem. Photobiol., A, 379, 63, 10.1016/j.jphotochem.2019.04.043 Sharma, 2020, Talanta, 21 Gao, 2019, Biomaterials, 194, 36, 10.1016/j.biomaterials.2018.12.013 Tan, 2019, Talanta, 194, 634, 10.1016/j.talanta.2018.10.031 Chen, 2020, Talanta, 1 Hossein-Nejad-Ariani, 2018, ACS Appl. Nano Mater., 1, 3389, 10.1021/acsanm.8b00600 Ji, 2018, Adv. Healthc. Mater., 7, 10.1002/adhm.201701370 Chan, 2012, Anal. Chem., 84, 8952, 10.1021/ac302417k Liu, 2015, Talanta, 134, 54, 10.1016/j.talanta.2014.10.058 Pal, 2017, Anal. Chim. Acta, 952, 81, 10.1016/j.aca.2016.11.041 Liu, 2013, Microchim. Acta, 181, 257, 10.1007/s00604-013-1096-2 Guo, 2015, Microchim. Acta, 182, 1483, 10.1007/s00604-015-1471-2 Tang, 2017, Analyst, 142, 4794, 10.1039/C7AN01459G Lin, 2013, Biosens. Bioelectron., 45, 82, 10.1016/j.bios.2013.01.058 Lv, 2017, ACS Appl. Mater. Interfaces, 9, 38336, 10.1021/acsami.7b13272 Mei, 2018, Anal. Chem., 90, 2749, 10.1021/acs.analchem.7b04789 Hu, 2016, Biosens. Bioelectron., 77, 666, 10.1016/j.bios.2015.10.046 Menon, 2017, J. Fluoresc., 27, 1541, 10.1007/s10895-017-2093-3 Peng, 2018, Anal. Chim. Acta, 1040, 143, 10.1016/j.aca.2018.08.014 Li, 2019, Sens. Actuators, B, 281, 28, 10.1016/j.snb.2018.09.128 Zhu, 2019, Talanta, 199, 72, 10.1016/j.talanta.2019.01.103 Chen, 2016, Biosens. Bioelectron., 79, 364, 10.1016/j.bios.2015.12.063 Zhao, 2017, Sens. Actuators, B, 241, 849, 10.1016/j.snb.2016.11.012 Peng, 2018, Microchim. Acta, 185, 1, 10.1007/s00604-017-2562-z Zhang, 2018, Anal. Chim. Acta, 1035, 168, 10.1016/j.aca.2018.06.039 Kaur, 2018, Nanoscale Res. Lett., 13, 302, 10.1186/s11671-018-2725-9 Lei YuLei Yu, Qiao Zhang, Qi Kang, Bin Zhang, Dazhong Shen, and Guizheng Zou. Anal. Chem. 92 (2020) 7581-7587. Zhuang, 2019, ACS Appl. Mater. Interfaces, 11, 31729, 10.1021/acsami.9b11599 Bioimaging: principles and techniques. In Introduction to Biophotonics; pp. 203–254. Farkas, 1998, Comput. Med. Imaging Graph., 22, 89, 10.1016/S0895-6111(98)00011-1 Zhang, 2014, Nanoscale, 6, 2261, 10.1039/C3NR05269A Tsai, 2016, J. Fluoresc., 26, 1239, 10.1007/s10895-016-1811-6 Chen, 2012, Nanoscale, 4, 6050, 10.1039/c2nr31616a Hu, 2014, Theranostics, 4, 142, 10.7150/thno.7266 Teng, 2013, J. Agric. Food. Chem., 61, 2556, 10.1021/jf4001567 Li, 2016, Talanta, 158, 118, 10.1016/j.talanta.2016.05.038 Wang, 2011, ACS Nano, 5, 9718, 10.1021/nn2032177 Zhao, 2015, J. Mater. Chem. B, 3, 2388, 10.1039/C4TB02130D Hashemi, 2017, Microchim. Acta, 185, 60, 10.1007/s00604-017-2600-x Shang, 2017, APL Mater., 5, 10.1063/1.4974514 Zhou, 2011, Angew. Chem., 123, 3226, 10.1002/ange.201007321 Prabhakar, 2013, Cancer Res., 73, 2412, 10.1158/0008-5472.CAN-12-4561 Rosenblum, 2018, Nat. Commun., 9, 1410, 10.1038/s41467-018-03705-y Reineck, 2017, Opt. Mater., 5, n/a-n/a Raut, 2014, Nanoscale, 6, 2594, 10.1039/C3NR05692A Zhao, 2015, Anal. Chem., 87, 9998, 10.1021/acs.analchem.5b02614 Wu, 2010, Nanoscale, 2, 2244, 10.1039/c0nr00359j Li, 2018, ACS Appl. Mater. Interfaces, 10, 83, 10.1021/acsami.7b13088 Raut, 2013, Chem. Phys. Lett., 561–562, 74, 10.1016/j.cplett.2013.01.028 Khandelia, 2015, Small, 11, 4075, 10.1002/smll.201500216 Al Kindi, 2018, J. Photochem. Photobiol., A, 357, 168, 10.1016/j.jphotochem.2018.02.029 Liu, 2016, J. Mater. Chem. B, 4, 1276, 10.1039/C5TB02322J Wang, 2015, Anal. Chem., 87, 4299, 10.1021/ac504752a Sun, 2013, Anal. Chem., 85, 8436, 10.1021/ac401879y Cui, 2017, ACS Appl. Mater. Interfaces Han, 2017, ACS Appl. Mater. Interfaces, 9, 6941, 10.1021/acsami.7b00246 Pan, 2017, ACS Appl. Mater. Interfaces, 9, 19495, 10.1021/acsami.6b06099 Gao, 2015, ACS Nano, 9, 4976, 10.1021/nn507130k Wang, 2013, Anal. Chem., 85, 2529, 10.1021/ac303747t Chen, 2012, Biomaterials, 33, 8461, 10.1016/j.biomaterials.2012.08.034 Hu, 2014, Biomaterials, 35, 9868, 10.1016/j.biomaterials.2014.08.038 Ding, 2015, Biosens. Bioelectron., 65, 183, 10.1016/j.bios.2014.10.034 Qiao, 2013, Chem. Commun., 49, 8030, 10.1039/c3cc44256j Kong, 2016, ChemistrySelect, 1, 1096, 10.1002/slct.201600099 Cui, 2017, Chin. Chem. Lett., 28, 1391, 10.1016/j.cclet.2016.12.038 Hu, 2013, Nanoscale, 5, 1624, 10.1039/c2nr33543c Kong, 2013, Nanoscale, 5, 1009, 10.1039/C2NR32760K Lin, 2013, Nanoscale Res. Lett., 8, 170, 10.1186/1556-276X-8-170 Wang, 2013, Sci. Rep., 3, 1157, 10.1038/srep01157 Zhou, 2016, Theranostics, 6, 679, 10.7150/thno.14556 Ding, 2018, ACS Appl. Mater. Interfaces, 10, 8947, 10.1021/acsami.7b18493 Latorre, 2019, Cancers, 11, 969, 10.3390/cancers11070969 Kumar, 2018, Mol. Pharm., 15, 2698, 10.1021/acs.molpharmaceut.8b00218 Liu, 2018, J. Control. Release, 278, 127, 10.1016/j.jconrel.2018.04.005 Goswami, 2018, ACS Appl. Mater. Interfaces, 10, 3282, 10.1021/acsami.7b15165 Wang, 2018, Trends Pharmacol. Sci., 39, 24, 10.1016/j.tips.2017.11.003 Xie, 2019, Adv. Mater., 31 Zhu, 2018, Adv. Ther., 1 Zhang, 2015, J. Mater. Chem. B, 3, 4735, 10.1039/C5TB00411J Huo, 2017, ACS Nano, 11, 10159, 10.1021/acsnano.7b04737 Zhang, 2014, Adv. Mater., 26, 4565, 10.1002/adma.201400866 Kefayat, 2019, Nanomed. Nanotechnol. Biol. Med., 16, 173, 10.1016/j.nano.2018.12.007 Ghahremani, 2018, RSC Adv., 8, 4249, 10.1039/C7RA11116A Ghahremani, 2018, Nanomedicine, 13, 2563, 10.2217/nnm-2018-0180 Chen, 2017, Nanoscale, 9, 14826, 10.1039/C7NR05316A Yong, 2016, NPG Asia Mater., 8, 10.1038/am.2016.63 Agostinis, 2011, CA Cancer J. Clin., 61, 250, 10.3322/caac.20114 Castano, 2006, Nat. Rev. Cancer, 6, 535, 10.1038/nrc1894 Ho-Wu, 2017, J. Phys. Chem. B, 121, 10073, 10.1021/acs.jpcb.7b09442 Poderys, 2020, J. Photochem. Photobiol., B, 204, 10.1016/j.jphotobiol.2020.111802 Zhang, 2015, Adv. Funct. Mater., 25, 1314, 10.1002/adfm.201403095 Xia, 2018, Biomaterials, 170, 1, 10.1016/j.biomaterials.2018.03.048 Chen, 2018, Nano Res., 11, 5657, 10.1007/s12274-017-1917-4 Huang, 2013, Biomaterials, 34, 4643, 10.1016/j.biomaterials.2013.02.063 Li, 2019, ACS Appl. Mater. Interfaces, 17215, 10.1021/acsami.9b02484 Yu, 2016, Adv. Healthcare Mater., 5, 2528, 10.1002/adhm.201600312 Yu, 2020, Mater. Sci. Eng., C, 109 Abbas, 2017, Adv. Mater., 29, 10.1002/adma.201605021 Gu, 2016, J. Mater. Chem. B, 4, 910, 10.1039/C5TB01619C Cifuentes-Rius, 2017, ACS Appl. Mater. Interfaces, 9, 41159, 10.1021/acsami.7b13100 A. Cifuentes-Rius, et al. Small 13 (2017) 1701201-n/a. Yang, 2016, Adv. Mater., 28, 5923, 10.1002/adma.201506119 Wang, 2015, Adv. Mater., 27, 3874, 10.1002/adma.201500229 Yang, 2016, ACS Nano, 10, 10245, 10.1021/acsnano.6b05760 Z. Lu, et al., Sci. Rep. 7 (2017), 41571-41571. Chen, 2012, ACS Appl. Mater. Interfaces, 4, 5766, 10.1021/am301223n Ding, 2015, ACS Appl. Mater. Interfaces, 7, 4713, 10.1021/am5083733 Wang, 2011, Angew. Chem. Int. Ed., 50, 11644, 10.1002/anie.201105573 Khlebtsov, 2016, J. Innov. Opt. Health Sci., 09, 10.1142/S1793545816500048 Bai, 2015, TrAC, Trends Anal. Chem., 73, 54, 10.1016/j.trac.2015.04.027 Yahia-Ammar, 2016, ACS Nano, 10, 2591, 10.1021/acsnano.5b07596 Luo, 2012, J. Am. Chem. Soc., 134, 16662, 10.1021/ja306199p Cao, 2017, Nanoscale, 9, 4128, 10.1039/C7NR00073A Kudarha, 2017, Mater. Sci. Eng., C, 81, 607, 10.1016/j.msec.2017.08.004 Liu, 2015, Part. Part. Syst. Char., 32, 749, 10.1002/ppsc.201400243 Chattoraj, 2016, ChemPhysChem, 17, 2088, 10.1002/cphc.201501163 Fu, 2018, Mater. Sci. Eng., C, 87, 149, 10.1016/j.msec.2017.12.028 Wang, 2017, Adv. Sci., 4, 1700175, 10.1002/advs.201700175 Lei, 2017, Nat. Commun., 8, 1, 10.1038/s41467-016-0009-6 Zhao, 2013, Nanoscale, 5, 8340, 10.1039/c3nr01990j Nain, 2020, J. Hazard. Mater., 389, 10.1016/j.jhazmat.2019.121821 Chen, 2010, Nanomedicine, 5, 755, 10.2217/nnm.10.43 Khlebtsov, 2015, RSC Adv., 5, 61639, 10.1039/C5RA11713E Miao, 2015, Nanoscale, 7, 19066, 10.1039/C5NR05362E Domenico, 1997, Antimicrob. Agents Chemother., 41, 1697, 10.1128/AAC.41.8.1697 Brach, 2017, Langmuir, 33, 8993, 10.1021/acs.langmuir.7b00873 Bertorelle, 2018, ACS Omega, 3, 15635, 10.1021/acsomega.8b02615 Bertorelle, 2018, ChemPhysChem, 19, 165, 10.1002/cphc.201701186 Olesiak-Banska, 2019, Chem. Soc. Rev., 48, 4087, 10.1039/C8CS00849C Bonačić-Koutecký, 2019, Nanoscale., 11, 12436, 10.1039/C9NR01826C Yu, 2014, J. Am. Chem. Soc., 136, 1246, 10.1021/ja411643u Rojas-Cervellera, 2017, Nanoscale, 9, 3121, 10.1039/C6NR08498B Soldan, 2016, Angew. Chem. Int. Ed., 55, 5749, 10.1002/anie.201600267 Bagheri, 2017, Biosens. Bioelectron., 89, 829, 10.1016/j.bios.2016.10.003 Guo, 2017, ACS Appl. Mater. Interfaces, 47, 41188, 10.1021/acsami.7b14952 Campbell, 2018, Int. J. Mol. Sci., 19, 2731, 10.3390/ijms19092731 S.K. Vashist, J.H.T. Luong, Smartphone-based immunoassays. Handbook of Immunoassay Technology 2018, chapter 16.