Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications
Tài liệu tham khảo
Jin, 2016, Chem. Rev., 116, 10346, 10.1021/acs.chemrev.5b00703
Tao, 2015, Chem. Soc. Rev., 44, 8636, 10.1039/C5CS00607D
Shiang, 2012, J. Mater. Chem., 22, 12972, 10.1039/c2jm30563a
Cui, 2014, TrAC, Trends Anal. Chem., 57, 73, 10.1016/j.trac.2014.02.005
Li, 2014, TrAC, Trends Anal. Chem., 58, 90, 10.1016/j.trac.2014.02.011
Chakraborty, 2017, Chem. Rev.
Taylor, 2017, Nat. Commun., 8, 15988, 10.1038/ncomms15988
Deraedt, 2017, Nano Lett., 17, 1853, 10.1021/acs.nanolett.6b05156
Jin, 2010, Nanoscale, 2, 343, 10.1039/B9NR00160C
Kim, 2014, Chem. Mater., 26, 59, 10.1021/cm402225z
Zhang, 2014, Nano Today, 9, 132, 10.1016/j.nantod.2014.02.010
X.-D. Zhang, et al., Sci. Rep. (2015) 8669.
Zhang, 2014, Adv. Healthcare Mater., 3, 133, 10.1002/adhm.201300189
Yuan, 2013, Chemistry, 8, 858
Schmid, 1999, Chem. Soc. Rev., 28, 179, 10.1039/a801153b
Dickerson, 2008, Chem. Rev., 108, 4935, 10.1021/cr8002328
Goswami, 2014, Nanoscale, 6, 13328, 10.1039/C4NR04561K
Crookes-Goodson, 2008, Chem. Soc. Rev., 37, 2403, 10.1039/b702825n
Bönnemann, 2001, Eur. J. Inorg. Chem., 2001, 2455, 10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z
Li, 2017, Sens. Actuators, B, 241, 1057, 10.1016/j.snb.2016.10.036
Thyrhaug, 2017, Nat. Commun., 8, 15577, 10.1038/ncomms15577
Kumar, 2014, Chem. Rev., 114, 7044, 10.1021/cr4007285
Yu, 2014, Chem. Commun., 50, 13805, 10.1039/C4CC06914E
Zhou, 2015, Chem. Rev., 115, 11669, 10.1021/acs.chemrev.5b00049
Xie, 2009, J. Am. Chem. Soc., 131, 888, 10.1021/ja806804u
Chen, 2015, ACS Nano, 9, 2173, 10.1021/acsnano.5b00141
Dutta, 2016, ACS Biomater. Sci. Eng., 2, 2090, 10.1021/acsbiomaterials.6b00517
Shamsipur, 2015, Microchim. Acta, 182, 1131, 10.1007/s00604-014-1428-x
Wang, 2014, Nanoscale, 6, 1775, 10.1039/C3NR04835G
Sarparast, 2016, Nano Res., 1
Liu, 2013, Anal. Chem., 85, 3238, 10.1021/ac303603f
Shao, 2011, J. Mater. Chem., 21, 2863, 10.1039/c0jm04071a
He, 2017, Colloids Surf., A, 518, 80, 10.1016/j.colsurfa.2017.01.018
Xavier Le, 2011, Nanotechnology, 22
West, 2016, ACS Appl. Mater. Interfaces, 8, 21221, 10.1021/acsami.6b06624
Gao, 2014, Sci. Rep., 4, 4384, 10.1038/srep04384
Chen, 2015, ACS Appl. Mater. Interfaces, 7, 18163, 10.1021/acsami.5b05805
Su, 2015, Chin. Chem. Lett., 26, 1400, 10.1016/j.cclet.2015.07.021
Kurdekar, 2020, Nanoscale Adv., 2, 304, 10.1039/C9NA00503J
Heo, 2019, ACS Appl. Mater. Interfaces, 11, 19669, 10.1021/acsami.8b22752
Croissant, 2016, J. Control. Release, 229, 183, 10.1016/j.jconrel.2016.03.030
Lv, 2020, Anal. Chim. Acta
Loynachan, 2019, Nat. Nanotechnol., 14, 883, 10.1038/s41565-019-0527-6
Xavier, 2012, Nano Rev., 3, 1, 10.3402/nano.v3i0.14767
Yu, 2016, Adv. Healthcare Mater., 5, 1844, 10.1002/adhm.201600192
Hu, 2015, Isr. J. Chem., 55, 682, 10.1002/ijch.201400178
Tan, 2013, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5, 569, 10.1002/wnan.1237
Liu, 2014, TrAC, Trends Anal. Chem., 58, 99, 10.1016/j.trac.2013.12.014
Zhao, 2015, J. Environ. Sci. Health, Part C, 33, 168, 10.1080/10590501.2015.1030490
Voet, 2017, Curr. Opin. Biotechnol., 46, 14, 10.1016/j.copbio.2016.10.015
Zhao, 2019, Part. Part. Syst. Char., 36, 1900298, 10.1002/ppsc.201900298
Zhao, 2019, Method. Appl. Fluoresc., 8, 10.1088/2050-6120/ab57e7
Porret, 2020, J. Mater. Chem. B, 8, 2216, 10.1039/C9TB02767J
Meng, 2020, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 12, 10.1002/wnan.1602
Kumar, 2020, Anal. Methods, 12, 1809, 10.1039/D0AY00157K
Liu, 2018, Chem. Rev., 118, 4981, 10.1021/acs.chemrev.7b00776
Ivleva, 2020, Mater. Des.
de Souza, N., 2007. Nat. Methods, 4(7), 540–540.
Shang, 2012, Nano Res., 5, 531, 10.1007/s12274-012-0238-x
Meziani, 2002, J. Phys. Chem. B, 106, 11178, 10.1021/jp0212747
Matulionyte, 2017, Int. J. Mol. Sci., 18, 378, 10.3390/ijms18020378
Dutta, 2017, Chem. Commun., 53, 1277, 10.1039/C6CC09092C
Shang, 2011, Nano Today, 6, 401, 10.1016/j.nantod.2011.06.004
Tan, 2010, J. Am. Chem. Soc., 132, 5677, 10.1021/ja907454f
Yue, 2012, Nanoscale., 4, 2251, 10.1039/c2nr12056a
Ghosh, 2017, J. Phys. Chem. C, 121, 13335, 10.1021/acs.jpcc.7b02436
Ghosh, 2019, J. Phys. Chem. C, 123, 17598, 10.1021/acs.jpcc.9b04009
Ghosh, 2019, J. Phys. Chem. C, 123, 29408, 10.1021/acs.jpcc.9b07765
Zheng, 2007, Annu. Rev. Phys. Chem., 58, 409, 10.1146/annurev.physchem.58.032806.104546
Yam, 2015, Chem. Rev., 115, 7589, 10.1021/acs.chemrev.5b00074
Xu, 2016, Nanotechnology, 27
Kawasaki, 2011, Adv. Funct. Mater., 21, 3508, 10.1002/adfm.201100886
Chen, 2013, J. Colloid Interface Sci., 396, 63, 10.1016/j.jcis.2013.01.031
Chaudhari, 2011, ACS Nano, 5, 8816, 10.1021/nn202901a
Mohanty, 2012, Nanoscale, 4, 4255, 10.1039/c2nr30729d
Mohanty, 2019, J. Phys. Chem. C, 123, 28969, 10.1021/acs.jpcc.9b07370
Wang, 2014, Angew. Chem. Int. Ed., 53, 2376, 10.1002/anie.201307480
Guo, 2011, Anal. Chem., 83, 2883, 10.1021/ac1032403
Ghosh, 2014, ACS Appl. Mater. Interfaces, 6, 3822, 10.1021/am500040t
Goswami, 2016, J. Phys. Chem. Lett., 7, 962, 10.1021/acs.jpclett.5b02765
Chevrier, 2018, Chem. Sci., 9, 2782, 10.1039/C7SC05086K
Yamauchi, 2002, J. Chem. Soc., Dalton Trans., 3411, 10.1039/B202385G
Dixon, 2018, J. Am. Chem. Soc., 140, 2265, 10.1021/jacs.7b11712
B. Maity, et al., Nat. commun. 8 (2017) 14820.
Kundu, 2017, J. Phys. Chem. Lett., 8, 2291, 10.1021/acs.jpclett.7b00600
Zhang, 2012, Biomaterials, 33, 4628, 10.1016/j.biomaterials.2012.03.020
Dong, 2015, Small, 11, 2571, 10.1002/smll.201403481
Soleilhac, 2018, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 193, 283, 10.1016/j.saa.2017.12.025
Wu, 2010, Nano Lett., 10, 2568, 10.1021/nl101225f
Shamsipur, 2018, ACS Sustainable Chem. Eng., 6, 11123, 10.1021/acssuschemeng.8b02674
Yarramala, 2017, ACS Sustainable Chem. Eng., 5, 6064, 10.1021/acssuschemeng.7b00958
Wang, 2017, New J. Chem., 41, 3766, 10.1039/C7NJ00642J
Habeeb Muhammed, 2010, Eur. J., 16, 10103, 10.1002/chem.201000841
Yang, 2017, Sens. Actuators, B, 251, 773, 10.1016/j.snb.2017.05.019
Fan, 2018, ACS Sensors, 3, 441, 10.1021/acssensors.7b00874
Liu, 2011, Chem. Commun., 47, 4237, 10.1039/c1cc00103e
Kumar Das, 2018, ChemPhysChem, 19, 2218, 10.1002/cphc.201800332
Zhu, 2008, J. Am. Chem. Soc., 130, 5883, 10.1021/ja801173r
Weerawardene, 2016, J. Am. Chem. Soc., 138, 11202, 10.1021/jacs.6b05293
Wen, 2012, J. Phys. Chem. C, 116, 19032, 10.1021/jp305902w
Wen, 2012, J. Phys. Chem. C, 116, 11830, 10.1021/jp303530h
Zheng, 2004, Phys. Rev. Lett., 93
Zheng, 2012, Nanoscale, 4, 4073, 10.1039/c2nr31192e
Stamplecoskie, 2014, J. Phys. Chem. C, 118, 1370, 10.1021/jp410856h
Ghosh, 2015, J. Phys. Chem. Lett., 6, 1293, 10.1021/acs.jpclett.5b00378
Goswami, 2011, Anal. Chem., 83, 9676, 10.1021/ac202610e
Yu, 2014, Nanoscale, 6, 9618, 10.1039/C3NR06896J
Mathew, 2011, J. Mater. Chem., 21, 11205, 10.1039/c1jm11452b
Liu, 2011, Angew. Chem. Int. Ed., 50, 7056, 10.1002/anie.201100299
Le Guével, 2011, J. Phys. Chem. C, 115, 10955, 10.1021/jp111820b
Wei, 2010, Analyst, 135, 1406, 10.1039/c0an00046a
Lin, 2010, Anal. Chem., 82, 9194, 10.1021/ac101427y
Lin, 2012, Analyst, 137, 2394, 10.1039/c2an35068h
Hu, 2010, Analyst, 135, 1411, 10.1039/c000589d
Xie, 2010, Chem. Commun., 46, 961, 10.1039/B920748A
Alkudaisi, 2019, J. Mater. Chem. B, 7, 1167, 10.1039/C9TB00009G
Zhang, 2013, J. Phys. Chem. C, 117, 639, 10.1021/jp309175k
Wen, 2011, Anal. Chem., 83, 1193, 10.1021/ac1031447
Liu, 2010, Adv. Funct. Mater., 20, 951, 10.1002/adfm.200902062
Selvaprakash, 2014, Biosens. Bioelectron., 61, 88, 10.1016/j.bios.2014.04.055
Deng, 1999, Mater. Manuf. Processes, 14, 623, 10.1080/10426919908907570
Sapsford, 2008, Mater. Today, 11, 38, 10.1016/S1369-7021(08)70018-X
De, 2008, Adv. Mater., 20, 4225, 10.1002/adma.200703183
Thomas, 2007, Chem. Rev., 107, 1339, 10.1021/cr0501339
Anker, 2008, Nat. Mater., 7, 442, 10.1038/nmat2162
Vella, F. Principles of bioinorganic chemistry: By S J Lippard and J M Berg. pp 411. University Science Books, Mill Valley, California. 1994. $30 ISBN 0-935702-73-3 (paper). Biochemical Education 1995, 23, 115-115.
Brathwaite, 1985, J. R. Soc. New Zealand, 15, 363, 10.1080/03036758.1985.10421713
Chen, 2015, Anal. Chem., 87, 216, 10.1021/ac503636j
Ghosh, 2015
Bray, 2018, CA Cancer J. Clin., 68, 394, 10.3322/caac.21492
Golubnitschaja, 2007, Surv. Ophthalmol., 52, S155, 10.1016/j.survophthal.2007.08.011
Sawyers, 2008, Nature, 452, 548, 10.1038/nature06913
Zhou, 2018, Anal. Chem., 90, 10024, 10.1021/acs.analchem.8b02642
Peng, 2012, Eur. J., 18, 5261, 10.1002/chem.201102876
Wang, 2011, Biosens. Bioelectron., 26, 3614, 10.1016/j.bios.2011.02.014
Tao, 2013, Biosens. Bioelectron., 42, 41, 10.1016/j.bios.2012.10.014
Tao, 2013, Adv. Mater., 25, 2594, 10.1002/adma.201204419
Tao, 2017, Theranostics, 7, 899, 10.7150/thno.17927
Retnakumari, 2009, Nanotechnology, 21
Xu, 2018, Microchim. Acta, 185, 198, 10.1007/s00604-018-2734-5
Chinen, 2015, Chem. Rev., 115, 10530, 10.1021/acs.chemrev.5b00321
Mousavi, 2017, Electroanalysis, 29, 861, 10.1002/elan.201600537
Lushchak, 2012, J. Amino Acids, 2012, 26, 10.1155/2012/736837
Bhamore, 2019, Sens. Actuators, B, 281, 812, 10.1016/j.snb.2018.11.001
Chen, 2012, Small, 8, 1912, 10.1002/smll.201102741
Lin, 2013, Biosens. Bioelectron., 41, 256, 10.1016/j.bios.2012.08.030
Mathew, 2017, ACS Sustainable Chem. Eng., 5, 4837, 10.1021/acssuschemeng.7b00273
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The molecular mechanisms of membrane transport and the maintenance of compartmental diversity, in: Molecular Biology of the Cell. 4th Ed. 2002. Garland Science.
Mita, 2019, Anal. Chem., 91, 4821, 10.1021/acs.analchem.9b00447
Yoo, 2010, Sensors, 10, 4558, 10.3390/s100504558
Jin, 2011, Biosens. Bioelectron., 26, 1965, 10.1016/j.bios.2010.08.019
Wang, 2015, RSC Adv., 5, 101599, 10.1039/C5RA19421K
Brzezicka, 2018, Nanoscale Res. Lett., 13, 360, 10.1186/s11671-018-2772-2
Ahlfors, 2004, Semin. Perinatol., 28, 334, 10.1053/j.semperi.2004.09.002
Jayasree, 2018, Anal. Chim. Acta, 1031, 152, 10.1016/j.aca.2018.05.026
Santhosh, 2014, Biosens. Bioelectron., 59, 370, 10.1016/j.bios.2014.04.003
Muñoz-Bustos, 2017, Sens. Actuators, B, 244, 922, 10.1016/j.snb.2017.01.071
Li, 2019, Talanta, 195, 372, 10.1016/j.talanta.2018.11.067
Selvaprakash, 2017, Biosens. Bioelectron., 92, 410, 10.1016/j.bios.2016.10.086
Shamsipur, 2016, Anal. Chem., 88, 2188, 10.1021/acs.analchem.5b03824
Ghosh, 2015, J. Phys. Chem. C, 119, 10776, 10.1021/acs.jpcc.5b03594
Griep, 2020, Plasmonics, 2, 1
Chen, 2012, Talanta, 94, 240, 10.1016/j.talanta.2012.03.033
Aswathy, 2014, Microchem. J., 116, 151, 10.1016/j.microc.2014.04.016
Chen, 2018, Anal. Chim. Acta, 1026, 133, 10.1016/j.aca.2018.04.014
Wang, 2018, Talanta, 178, 1006, 10.1016/j.talanta.2017.08.102
Cao, 2015, Anal. Chim. Acta, 871, 43, 10.1016/j.aca.2015.02.031
Meng, 2017, Anal. Methods, 9, 768, 10.1039/C6AY03280J
Yan, 2018, ACS Sustainable Chem. Eng., 6, 4504, 10.1021/acssuschemeng.8b00112
Jaishankar, 2014, Interdiscip. Toxicol., 7, 60, 10.2478/intox-2014-0009
Zhang, 2017, Sens. Actuators, B, 238, 683, 10.1016/j.snb.2016.07.118
Zhang, 2016, Nano Today, 11, 309, 10.1016/j.nantod.2016.05.010
Li, 2017, Analyst, 142, 567, 10.1039/C6AN02112C
H. Kawasaki, et al. Anal. Sci., 27 (2011), 591-591.
Zang, 2016, Anal. Chem., 88, 10275, 10.1021/acs.analchem.6b03011
Xu, 2015, Microchim. Acta, 182, 2577, 10.1007/s00604-015-1613-6
Wang, 2018, Sens. Actuators, B, 267, 342, 10.1016/j.snb.2018.04.034
Ding, 2015, Anal. Methods, 7, 5787, 10.1039/C5AY01112D
Sanders, 2009, Rev. Environ. Health, 24, 15, 10.1515/REVEH.2009.24.1.15
Gaetke, 2003, Toxicology, 189, 147, 10.1016/S0300-483X(03)00159-8
Mayr, 2002, Anal. Chim. Acta, 462, 1, 10.1016/S0003-2670(02)00234-9
Letelier, 2005, Chem. Biol. Interact., 151, 71, 10.1016/j.cbi.2004.12.004
Yang, 2013, J. Mater. Chem. C, 1, 6748, 10.1039/c3tc31398k
Ghosh, 2014, Anal. Chem., 86, 3188, 10.1021/ac500122v
Akshath, 2020, J. Fluoresc., 17, 1
Liu, 2015, Biosens. Bioelectron., 74, 322, 10.1016/j.bios.2015.06.034
Huang, 2018, Microchim. Acta, 185, 1, 10.1007/s00604-017-2562-z
Lu, 2014, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 121, 77, 10.1016/j.saa.2013.10.009
Zhang, 2019, Sens. Actuators, B, 279, 361, 10.1016/j.snb.2018.09.100
Cui, 2013, Sens. Actuators, B, 188, 53, 10.1016/j.snb.2013.05.098
Zhang, 2013, Chem. Commun., 49, 2691, 10.1039/c3cc38298b
Liu, 2016, Anal. Chem., 88, 10631, 10.1021/acs.analchem.6b02995
Biswas, 2017, ACS Omega, 2, 2499, 10.1021/acsomega.7b00199
Shen, 2018, Anal. Chem., 90, 4478, 10.1021/acs.analchem.7b04798
Liu, 2015, Anal. Chim. Acta, 886, 151, 10.1016/j.aca.2015.07.001
Ju, 2018, Sens. Actuators, B, 275, 244, 10.1016/j.snb.2018.08.052
Lee, 2016, RSC Adv., 6, 79020, 10.1039/C6RA16043C
Okabe, 2012, Nat. Commun., 3, 705, 10.1038/ncomms1714
Wang, 2015, Nano Res., 8, 1975, 10.1007/s12274-015-0707-0
Jaque, 2012, Nanoscale, 4, 4301, 10.1039/c2nr30764b
Chen, 2014, Nanoscale, 6, 9594, 10.1039/C4NR02069C
Lan, 2015, Talanta, 143, 469, 10.1016/j.talanta.2015.05.042
Tian, 2017, Talanta, 170, 530, 10.1016/j.talanta.2017.03.107
Roos, 1981, Physiol. Rev., 61, 296, 10.1152/physrev.1981.61.2.296
Wang, 2014, Analyst, 139, 2990, 10.1039/C4AN00113C
Zhang, 2016, J. Mater. Chem. C, 4, 3540, 10.1039/C6TC00314A
Qiao, 2015, Sens. Actuators, B, 220, 1064, 10.1016/j.snb.2015.06.073
Miao, 2018, New J. Chem., 42, 1446, 10.1039/C7NJ03524A
Xiong, 2017, Sens. Actuators, B, 239, 988, 10.1016/j.snb.2016.08.114
Ali, 2017, Microchim. Acta, 184, 3309, 10.1007/s00604-017-2352-7
Wu, 2016, Nanoscale, 8, 11210, 10.1039/C6NR02341J
Wei, 2019, Part. Part. Syst. Char., 36
S. Govindaraju, et al. Sci. Rep. 2017, 7, 40298-40298.
Govindaraju, 2019, Appl. Surf. Sci., 498, 10.1016/j.apsusc.2019.143837
Li, 2014, Analyst, 139, 285, 10.1039/C3AN01736B
Sha, 2019, Sens. Actuators, B, 294, 177, 10.1016/j.snb.2019.05.060
He, 2012, Analyst, 137, 4005, 10.1039/c2an35712g
Yang, 2016, Talanta, 154, 190, 10.1016/j.talanta.2016.03.066
Ghosh, 2019, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 215, 209, 10.1016/j.saa.2019.02.078
Li, 2017, Microchim. Acta, 184, 3539, 10.1007/s00604-017-2374-1
Aparna, 2019, J. Photochem. Photobiol., A, 379, 63, 10.1016/j.jphotochem.2019.04.043
Sharma, 2020, Talanta, 21
Gao, 2019, Biomaterials, 194, 36, 10.1016/j.biomaterials.2018.12.013
Tan, 2019, Talanta, 194, 634, 10.1016/j.talanta.2018.10.031
Chen, 2020, Talanta, 1
Hossein-Nejad-Ariani, 2018, ACS Appl. Nano Mater., 1, 3389, 10.1021/acsanm.8b00600
Ji, 2018, Adv. Healthc. Mater., 7, 10.1002/adhm.201701370
Chan, 2012, Anal. Chem., 84, 8952, 10.1021/ac302417k
Liu, 2015, Talanta, 134, 54, 10.1016/j.talanta.2014.10.058
Pal, 2017, Anal. Chim. Acta, 952, 81, 10.1016/j.aca.2016.11.041
Liu, 2013, Microchim. Acta, 181, 257, 10.1007/s00604-013-1096-2
Guo, 2015, Microchim. Acta, 182, 1483, 10.1007/s00604-015-1471-2
Tang, 2017, Analyst, 142, 4794, 10.1039/C7AN01459G
Lin, 2013, Biosens. Bioelectron., 45, 82, 10.1016/j.bios.2013.01.058
Lv, 2017, ACS Appl. Mater. Interfaces, 9, 38336, 10.1021/acsami.7b13272
Mei, 2018, Anal. Chem., 90, 2749, 10.1021/acs.analchem.7b04789
Hu, 2016, Biosens. Bioelectron., 77, 666, 10.1016/j.bios.2015.10.046
Menon, 2017, J. Fluoresc., 27, 1541, 10.1007/s10895-017-2093-3
Peng, 2018, Anal. Chim. Acta, 1040, 143, 10.1016/j.aca.2018.08.014
Li, 2019, Sens. Actuators, B, 281, 28, 10.1016/j.snb.2018.09.128
Zhu, 2019, Talanta, 199, 72, 10.1016/j.talanta.2019.01.103
Chen, 2016, Biosens. Bioelectron., 79, 364, 10.1016/j.bios.2015.12.063
Zhao, 2017, Sens. Actuators, B, 241, 849, 10.1016/j.snb.2016.11.012
Peng, 2018, Microchim. Acta, 185, 1, 10.1007/s00604-017-2562-z
Zhang, 2018, Anal. Chim. Acta, 1035, 168, 10.1016/j.aca.2018.06.039
Kaur, 2018, Nanoscale Res. Lett., 13, 302, 10.1186/s11671-018-2725-9
Lei YuLei Yu, Qiao Zhang, Qi Kang, Bin Zhang, Dazhong Shen, and Guizheng Zou. Anal. Chem. 92 (2020) 7581-7587.
Zhuang, 2019, ACS Appl. Mater. Interfaces, 11, 31729, 10.1021/acsami.9b11599
Bioimaging: principles and techniques. In Introduction to Biophotonics; pp. 203–254.
Farkas, 1998, Comput. Med. Imaging Graph., 22, 89, 10.1016/S0895-6111(98)00011-1
Zhang, 2014, Nanoscale, 6, 2261, 10.1039/C3NR05269A
Tsai, 2016, J. Fluoresc., 26, 1239, 10.1007/s10895-016-1811-6
Chen, 2012, Nanoscale, 4, 6050, 10.1039/c2nr31616a
Hu, 2014, Theranostics, 4, 142, 10.7150/thno.7266
Teng, 2013, J. Agric. Food. Chem., 61, 2556, 10.1021/jf4001567
Li, 2016, Talanta, 158, 118, 10.1016/j.talanta.2016.05.038
Wang, 2011, ACS Nano, 5, 9718, 10.1021/nn2032177
Zhao, 2015, J. Mater. Chem. B, 3, 2388, 10.1039/C4TB02130D
Hashemi, 2017, Microchim. Acta, 185, 60, 10.1007/s00604-017-2600-x
Shang, 2017, APL Mater., 5, 10.1063/1.4974514
Zhou, 2011, Angew. Chem., 123, 3226, 10.1002/ange.201007321
Prabhakar, 2013, Cancer Res., 73, 2412, 10.1158/0008-5472.CAN-12-4561
Rosenblum, 2018, Nat. Commun., 9, 1410, 10.1038/s41467-018-03705-y
Reineck, 2017, Opt. Mater., 5, n/a-n/a
Raut, 2014, Nanoscale, 6, 2594, 10.1039/C3NR05692A
Zhao, 2015, Anal. Chem., 87, 9998, 10.1021/acs.analchem.5b02614
Wu, 2010, Nanoscale, 2, 2244, 10.1039/c0nr00359j
Li, 2018, ACS Appl. Mater. Interfaces, 10, 83, 10.1021/acsami.7b13088
Raut, 2013, Chem. Phys. Lett., 561–562, 74, 10.1016/j.cplett.2013.01.028
Khandelia, 2015, Small, 11, 4075, 10.1002/smll.201500216
Al Kindi, 2018, J. Photochem. Photobiol., A, 357, 168, 10.1016/j.jphotochem.2018.02.029
Liu, 2016, J. Mater. Chem. B, 4, 1276, 10.1039/C5TB02322J
Wang, 2015, Anal. Chem., 87, 4299, 10.1021/ac504752a
Sun, 2013, Anal. Chem., 85, 8436, 10.1021/ac401879y
Cui, 2017, ACS Appl. Mater. Interfaces
Han, 2017, ACS Appl. Mater. Interfaces, 9, 6941, 10.1021/acsami.7b00246
Pan, 2017, ACS Appl. Mater. Interfaces, 9, 19495, 10.1021/acsami.6b06099
Gao, 2015, ACS Nano, 9, 4976, 10.1021/nn507130k
Wang, 2013, Anal. Chem., 85, 2529, 10.1021/ac303747t
Chen, 2012, Biomaterials, 33, 8461, 10.1016/j.biomaterials.2012.08.034
Hu, 2014, Biomaterials, 35, 9868, 10.1016/j.biomaterials.2014.08.038
Ding, 2015, Biosens. Bioelectron., 65, 183, 10.1016/j.bios.2014.10.034
Qiao, 2013, Chem. Commun., 49, 8030, 10.1039/c3cc44256j
Kong, 2016, ChemistrySelect, 1, 1096, 10.1002/slct.201600099
Cui, 2017, Chin. Chem. Lett., 28, 1391, 10.1016/j.cclet.2016.12.038
Hu, 2013, Nanoscale, 5, 1624, 10.1039/c2nr33543c
Kong, 2013, Nanoscale, 5, 1009, 10.1039/C2NR32760K
Lin, 2013, Nanoscale Res. Lett., 8, 170, 10.1186/1556-276X-8-170
Wang, 2013, Sci. Rep., 3, 1157, 10.1038/srep01157
Zhou, 2016, Theranostics, 6, 679, 10.7150/thno.14556
Ding, 2018, ACS Appl. Mater. Interfaces, 10, 8947, 10.1021/acsami.7b18493
Latorre, 2019, Cancers, 11, 969, 10.3390/cancers11070969
Kumar, 2018, Mol. Pharm., 15, 2698, 10.1021/acs.molpharmaceut.8b00218
Liu, 2018, J. Control. Release, 278, 127, 10.1016/j.jconrel.2018.04.005
Goswami, 2018, ACS Appl. Mater. Interfaces, 10, 3282, 10.1021/acsami.7b15165
Wang, 2018, Trends Pharmacol. Sci., 39, 24, 10.1016/j.tips.2017.11.003
Xie, 2019, Adv. Mater., 31
Zhu, 2018, Adv. Ther., 1
Zhang, 2015, J. Mater. Chem. B, 3, 4735, 10.1039/C5TB00411J
Huo, 2017, ACS Nano, 11, 10159, 10.1021/acsnano.7b04737
Zhang, 2014, Adv. Mater., 26, 4565, 10.1002/adma.201400866
Kefayat, 2019, Nanomed. Nanotechnol. Biol. Med., 16, 173, 10.1016/j.nano.2018.12.007
Ghahremani, 2018, RSC Adv., 8, 4249, 10.1039/C7RA11116A
Ghahremani, 2018, Nanomedicine, 13, 2563, 10.2217/nnm-2018-0180
Chen, 2017, Nanoscale, 9, 14826, 10.1039/C7NR05316A
Yong, 2016, NPG Asia Mater., 8, 10.1038/am.2016.63
Agostinis, 2011, CA Cancer J. Clin., 61, 250, 10.3322/caac.20114
Castano, 2006, Nat. Rev. Cancer, 6, 535, 10.1038/nrc1894
Ho-Wu, 2017, J. Phys. Chem. B, 121, 10073, 10.1021/acs.jpcb.7b09442
Poderys, 2020, J. Photochem. Photobiol., B, 204, 10.1016/j.jphotobiol.2020.111802
Zhang, 2015, Adv. Funct. Mater., 25, 1314, 10.1002/adfm.201403095
Xia, 2018, Biomaterials, 170, 1, 10.1016/j.biomaterials.2018.03.048
Chen, 2018, Nano Res., 11, 5657, 10.1007/s12274-017-1917-4
Huang, 2013, Biomaterials, 34, 4643, 10.1016/j.biomaterials.2013.02.063
Li, 2019, ACS Appl. Mater. Interfaces, 17215, 10.1021/acsami.9b02484
Yu, 2016, Adv. Healthcare Mater., 5, 2528, 10.1002/adhm.201600312
Yu, 2020, Mater. Sci. Eng., C, 109
Abbas, 2017, Adv. Mater., 29, 10.1002/adma.201605021
Gu, 2016, J. Mater. Chem. B, 4, 910, 10.1039/C5TB01619C
Cifuentes-Rius, 2017, ACS Appl. Mater. Interfaces, 9, 41159, 10.1021/acsami.7b13100
A. Cifuentes-Rius, et al. Small 13 (2017) 1701201-n/a.
Yang, 2016, Adv. Mater., 28, 5923, 10.1002/adma.201506119
Wang, 2015, Adv. Mater., 27, 3874, 10.1002/adma.201500229
Yang, 2016, ACS Nano, 10, 10245, 10.1021/acsnano.6b05760
Z. Lu, et al., Sci. Rep. 7 (2017), 41571-41571.
Chen, 2012, ACS Appl. Mater. Interfaces, 4, 5766, 10.1021/am301223n
Ding, 2015, ACS Appl. Mater. Interfaces, 7, 4713, 10.1021/am5083733
Wang, 2011, Angew. Chem. Int. Ed., 50, 11644, 10.1002/anie.201105573
Khlebtsov, 2016, J. Innov. Opt. Health Sci., 09, 10.1142/S1793545816500048
Bai, 2015, TrAC, Trends Anal. Chem., 73, 54, 10.1016/j.trac.2015.04.027
Yahia-Ammar, 2016, ACS Nano, 10, 2591, 10.1021/acsnano.5b07596
Luo, 2012, J. Am. Chem. Soc., 134, 16662, 10.1021/ja306199p
Cao, 2017, Nanoscale, 9, 4128, 10.1039/C7NR00073A
Kudarha, 2017, Mater. Sci. Eng., C, 81, 607, 10.1016/j.msec.2017.08.004
Liu, 2015, Part. Part. Syst. Char., 32, 749, 10.1002/ppsc.201400243
Chattoraj, 2016, ChemPhysChem, 17, 2088, 10.1002/cphc.201501163
Fu, 2018, Mater. Sci. Eng., C, 87, 149, 10.1016/j.msec.2017.12.028
Wang, 2017, Adv. Sci., 4, 1700175, 10.1002/advs.201700175
Lei, 2017, Nat. Commun., 8, 1, 10.1038/s41467-016-0009-6
Zhao, 2013, Nanoscale, 5, 8340, 10.1039/c3nr01990j
Nain, 2020, J. Hazard. Mater., 389, 10.1016/j.jhazmat.2019.121821
Chen, 2010, Nanomedicine, 5, 755, 10.2217/nnm.10.43
Khlebtsov, 2015, RSC Adv., 5, 61639, 10.1039/C5RA11713E
Miao, 2015, Nanoscale, 7, 19066, 10.1039/C5NR05362E
Domenico, 1997, Antimicrob. Agents Chemother., 41, 1697, 10.1128/AAC.41.8.1697
Brach, 2017, Langmuir, 33, 8993, 10.1021/acs.langmuir.7b00873
Bertorelle, 2018, ACS Omega, 3, 15635, 10.1021/acsomega.8b02615
Bertorelle, 2018, ChemPhysChem, 19, 165, 10.1002/cphc.201701186
Olesiak-Banska, 2019, Chem. Soc. Rev., 48, 4087, 10.1039/C8CS00849C
Bonačić-Koutecký, 2019, Nanoscale., 11, 12436, 10.1039/C9NR01826C
Yu, 2014, J. Am. Chem. Soc., 136, 1246, 10.1021/ja411643u
Rojas-Cervellera, 2017, Nanoscale, 9, 3121, 10.1039/C6NR08498B
Soldan, 2016, Angew. Chem. Int. Ed., 55, 5749, 10.1002/anie.201600267
Bagheri, 2017, Biosens. Bioelectron., 89, 829, 10.1016/j.bios.2016.10.003
Guo, 2017, ACS Appl. Mater. Interfaces, 47, 41188, 10.1021/acsami.7b14952
Campbell, 2018, Int. J. Mol. Sci., 19, 2731, 10.3390/ijms19092731
S.K. Vashist, J.H.T. Luong, Smartphone-based immunoassays. Handbook of Immunoassay Technology 2018, chapter 16.