Protein pE120R of African swine fever virus is post-translationally acetylated as revealed by post-source decay MALDI mass spectrometry
Tóm tắt
Post-translational modification of proteins is a key regulatory event in many cellular processes. African swine fever virus (ASFV) is a large DNA virus that contains about 150 open reading frames (ORF) which encode for more than 150 polypeptides, most of them without assigned function. Two-dimensional gel electrophoresis (2DE) followed by Post-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (PSD-MALDI-MS) revealed that ASFV protein pE120R, essential for virus transport from assembly sites to plasma membranes, is acetylated at the N-terminal Ala residue during infection. To our knowledge, this is the first acetylated ASFV protein described and this modification might be relevant to ASFV life cycle since many viruses use the acetylation signaling pathway as a primary target for viral proteins after infection.
Tài liệu tham khảo
L.K. Dixon, J.M. Escribano, C. Martins, D.L. Rock, M.L. Salas, P.J. Wilkinson, in Virus Taxonomy, VIII Report of the ICTV, eds., by C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball, (Elsevier/Academic Press, London, 2004), pp 135–143
R.J. Yanez, J.M. Rodriguez, M.L. Nogal, L. Yuste, C. Enriquez, J.F. Rodriguez, E. Vinuela, Virology 208, 249–278 (1995)
E. Domingo, R.G. Webster, Holland (eds.), African swine fever virus: a missing link between poxviruses and iridoviruses? (Academic Press, London, 1999) pp 467–480
E.R. Tulman, D.L. Rock, Curr Opin Microbiol 4, 456–461 (2001)
L. Martinez-Pomares, C. Simon-Mateo, C. Lopez-Otin, E. Vinuela, Virology 229, 201–211 (1997)
G. Andres R., Garcia-Escudero, E. Vinuela, M.L. Salas, J.M. Rodriguez, J Virol 75, 6758–6768 (2001)
R. Aebersold, M. Mann, Nature 422, 198–207 (2003)
C. Alcaraz, A. Brun, F. Ruiz-Gonzalvo, J.M. Escribano, Virus Res 23, 173–182 (1992)
J.M. Rodriguez, M.L. Salas, J.F. Santaren, Proteomics 1, 1447–1456 (2001)
P. Alfonso, J. Rivera, B. Hernaez, C. Alonso, J.M. Escribano, Proteomics 4, 2037–2046 (2004)
A. Shevchenko, M. Wilm, O. Vorm, M. Mann, Anal Chem 68, 850–858 (1996)
D.N. Perkins, D.J. Pappin, D.M. Creasy, J.S. Cottrell, Electrophoresis 20, 3551–3567 (1999)
T. Kouzarides, Embo J 19, 1176–1179 (2000)
A.J. Bannister, E.A. Miska, D. Gorlich, T. Kouzarides, Curr Biol 10, 467–470 (2000)
D. Seigneurin-Berny, A. Verdel, S. Curtet, C. Lemercier, J. Garin, S. Rousseaux, S. Khochbin, Mol Cell Biol 21, 8035–8044 (2001)
C. Hubbert, A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.F. Wang, T.P. Yao, Nature 417, 455–458 (2002)
C. Caron, E. Col, S. Khochbin, Bioessays 25, 58–65 (2003)
M.I. Swanson, Y.M. She, W. Ens, E.G. Brown, K.M. Coombs, Rapid Commun Mass Spectrom 16(24), 2317–2324 (2002)
K.T. Jeang, H. Xiao, E.A. Rich, J Biol Chem 274, 28837–28840 (1999)
K. Wong, A. Sharma, S. Awasthi, E.F. Matlock, L. Rogers, C. Van Lint, D.J. Skiest, D.K. Burns, R. Harrod, J Biol Chem 280, 9390–9399 (2005)
K.R. Lundblad, R.P. Kwok, M.E. Laurence, M.L. Harter, R.H. Goodman, Nature 374, 85–88 (1995)
M. Li, B. Damania, X. Alvarez, V. Ogryzko, K. Ozato, J.U. Jung, Mol Cell Biol 20, 8254–8263 (2000)
A.G. Granja, M.L. Nogal, C. Hurtado, C. Del Aguila, A.L. Carrascosa, M.L. Salas, M. Fresno, Y. Revilla, J Immunol 176, 451–462 (2006)