Protein gating by vapor deposited Janus membranes
Tài liệu tham khảo
Yang, 2016, Janus membranes: exploring duality for advanced separation, Angew. Chem. Int. Ed., 55, 13398, 10.1002/anie.201601589
Wu, 2012, Unidirectional water-penetration composite fibrous film via electrospinning, Soft Matter, 8, 5996, 10.1039/c2sm25514f
Wang, 2010, Directional water-transfer through fabrics induced by asymmetric wettability, J. Mater. Chem., 20, 7938, 10.1039/c0jm02364g
Guo, 2015, Ordered porous structure hybrid films generated by breath figures for directional water penetration, RSC Adv., 5, 88471, 10.1039/C5RA13627J
Zhou, 2013, Superphobicity/philicity janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids, Sci. Rep., 3, 2964, 10.1038/srep02964
Wang, 2015, Dual‐layer superamphiphobic/superhydrophobic‐oleophilic nanofibrous membranes with unidirectional oil‐transport ability and strengthened oil–water separation performance, Adv. Mater. Interfaces, 2, 1400506, 10.1002/admi.201400506
Hou, 2010, A pH‐gating ionic transport nanodevice: asymmetric chemical modification of single nanochannels, Adv. Mater., 22, 2440, 10.1002/adma.200904268
Tian, 2014, Droplet and fluid gating by biomimetic janus membranes, Adv. Funct. Mater., 24, 6023, 10.1002/adfm.201400714
Wang, 2016, Rapid and efficient separation of oil from oil‐in‐water emulsions using a Janus cotton fabric, Angew. Chem., 128, 1313, 10.1002/ange.201507451
Zhang, 2013, Bioinspired artificial single ion pump, J. Am. Chem. Soc., 135, 16102, 10.1021/ja4037669
Zhang, 2015, Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device, J. Am. Chem. Soc., 137, 14765, 10.1021/jacs.5b09918
Zhang, 2016, A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating, Adv. Mater., 28, 144, 10.1002/adma.201503668
Chu, 2004, Control of pore size and permeability of a glucose-responsive gating membrane for insulin delivery, J. Control. Release, 97, 43, 10.1016/j.jconrel.2004.02.026
Tufani, 2017, Smart membranes with pH-responsive control of macromolecule permeability, J. Membr. Sci., 537, 255, 10.1016/j.memsci.2017.05.024
Liu, 2016, Stimuli-responsive smart gating membranes, Chem. Soc. Rev., 45, 460, 10.1039/C5CS00692A
Tokarev, 2010, Stimuli‐responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes, Adv. Mater., 22, 3446, 10.1002/adma.201000165
Luo, 2015, Smart gating membranes with in situ self-assembled responsive nanogels as functional gates, Sci. Rep., 5, 14708, 10.1038/srep14708
Qu, 2006, A pH‐responsive gating membrane system with pumping effects for improved controlled release, Adv. Funct. Mater., 16, 1865, 10.1002/adfm.200500897
Chen, 2013, Stimuli-responsive gating membranes responding to temperature, pH, salt concentration and anion species, J. Membr. Sci., 442, 206, 10.1016/j.memsci.2013.04.041
Lee, 2016, Bioinspired dual stimuli-responsive membranous system with multiple on–off gates, ACS Appl. Mater. Interfaces, 8, 11758, 10.1021/acsami.6b01788
Gadsby, 2009, Ion channels versus ion pumps: the principal difference, in principle, Nat. Rev. Mol. Cell Biol., 10, 344, 10.1038/nrm2668
Rees, 2008
Gleason, 2015
Beach, 1978, A model for the vapor deposition polymerization of p-xylylene, Macromolecules, 11, 72, 10.1021/ma60061a014
Ince, 2010, Highly swellable free-standing hydrogel nanotube forests, Soft Matter, 6, 1635, 10.1039/c000569j
Ozaydin‐Ince, 2010, Tunable conformality of polymer coatings on high aspect ratio features, Chem. Vap. Depos., 16, 100, 10.1002/cvde.200906821
Moni, 2017, Vapor deposition routes to conformal polymer thin films, Beilstein J. Nanotechnol., 8, 723, 10.3762/bjnano.8.76
Asatekin, 2010, Polymeric nanopore membranes for hydrophobicity-based separations by conformal initiated chemical vapor deposition, Nano Lett., 11, 677, 10.1021/nl103799d
Gupta, 2008, Initiated chemical vapor deposition (iCVD) of conformal polymeric nanocoatings for the surface modification of high-aspect-ratio pores, Chem. Mater., 20, 1646, 10.1021/cm702810j
Servi, 2017, The effects of iCVD film thickness and conformality on the permeability and wetting of MD membranes, J. Membr. Sci., 523, 470, 10.1016/j.memsci.2016.10.008
Fogler, 1999
Belfiore, 2003
Wang, 2013, Highly swellable ultrathin poly (4-vinylpyridine) multilayer hydrogels with pH-triggered surface wettability, Soft Matter, 9, 9420, 10.1039/c3sm51496j
Mika, 2001, Calculation of the hydrodynamic permeability of gels and gel-filled microporous membranes, Ind. Eng. Chem. Res., 40, 1694, 10.1021/ie000794q
Ren, 2008, The role of hydrogen bonding in tethered polymer layers, J. Phys. Chem. B, 112, 16238, 10.1021/jp8080904
Shevate, 2016, Polyanionic pH-responsive polystyrene-b-poly (4-vinyl pyridine-N-oxide) isoporous membranes, J. Membr. Sci., 501, 161, 10.1016/j.memsci.2015.11.038
Nunes, 2011, Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly, ACS Nano, 5, 3516, 10.1021/nn200484v
Nunes, 2011, From micelle supramolecular assemblies in selective solvents to isoporous membranes, Langmuir, 27, 10184, 10.1021/la201439p
Sun, 2014, Surface-active isoporous membranes nondestructively derived from perpendicularly aligned block copolymers for size-selective separation, J. Membr. Sci., 466, 229, 10.1016/j.memsci.2014.04.055
Barbosa, 2010, The importance of protein-protein interactions on the pH-induced conformational changes of bovine serum albumin: a small-angle X-ray scattering study, Biophys. J., 98, 147, 10.1016/j.bpj.2009.09.056
Jachimska, 2012, Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces, Bioelectrochemistry, 87, 138, 10.1016/j.bioelechem.2011.09.004
Dalvie, 1992, Transport studies with porous alumina membranes, J. Membr. Sci., 71, 247, 10.1016/0376-7388(92)80209-3