Protein folding in membranes

Cellular and Molecular Life Sciences - Tập 67 - Trang 1779-1798 - 2010
Sebastian Fiedler1, Jana Broecker1, Sandro Keller1,2
1Leibniz Institute of Molecular Pharmacology (FMP), Berlin, Germany
2Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany

Tóm tắt

Separation of cells and organelles by bilayer membranes is a fundamental principle of life. Cellular membranes contain a baffling variety of proteins, which fulfil vital functions as receptors and signal transducers, channels and transporters, motors and anchors. The vast majority of membrane-bound proteins contain bundles of α-helical transmembrane domains. Understanding how these proteins adopt their native, biologically active structures in the complex milieu of a membrane is therefore a major challenge in today’s life sciences. Here, we review recent progress in the folding, unfolding and refolding of α-helical membrane proteins and compare the molecular interactions that stabilise proteins in lipid bilayers. We also provide a critical discussion of a detergent denaturation assay that is increasingly used to determine membrane-protein stability but is not devoid of conceptual difficulties.

Tài liệu tham khảo

Fersht AR (2008) From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Nat Rev Mol Cell Biol 9:650–654 Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038 Overington JP, Al Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996 Haber E, Anfinsen CB (1962) Side-chain interactions governing the pairing of half-cystine residues in ribonuclease. J Biol Chem 237:1839–1844 Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230 Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316 Pace CN, Shirley BA, McNutt M, Gajiwala K (1996) Forces contributing to the conformational stability of proteins. FASEB J 10:75–83 Ptitsyn OB (1973) Stages in the mechanism of self-organization of protein molecules. Dokl Akad Nauk SSSR 210:1213–1215 Dolgikh DA, Gilmanshin RI, Brazhnikov EV, Bychkova VE, Semisotnov GV, Venyaminov SY, Ptitsyn OB (1981) α-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett 136:311–315 Myers JK, Pace CN (1996) Hydrogen bonding stabilizes globular proteins. Biophys J 71:2033–2039 O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254:539–544 Chen J, Stites WE (2001) Energetics of side chain packing in staphylococcal nuclease assessed by systematic double mutant cycles. Biochemistry 40:14004–14011 Cupp-Vickery JR, Vickery LE (2000) Crystal structure of Hsc20, a J-type co-chaperone from Escherichia coli. J Mol Biol 304:835–845 Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28 Hill RB, DeGrado WF (1998) Solution structure of α2D, a nativelike de novo designed protein. J Am Chem Soc 120:1138–1145 Waters ML (2002) Aromatic interactions in model systems. Curr Opin Chem Biol 6:736–741 Dougherty DA (1996) Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271:163–168 Weaver LH, Matthews BW (1987) Structure of bacteriophage T4 lysozyme refined at 1.7 Å resolution. J Mol Biol 193:189–199 Engelman DM, Zaccai G (1980) Bacteriorhodopsin is an inside-out protein. Proc Natl Acad Sci USA 77:5894–5898 Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398 Rees DC, Komiya H, Yeates TO, Allen JP, Feher G (1989) The bacterial photosynthetic reaction center as a model for membrane proteins. Annu Rev Biochem 58:607–633 Rees DC, DeAntonio L, Eisenberg D (1989) Hydrophobic organization of membrane proteins. Science 245:510–513 Samatey FA, Xu C, Popot J-L (1995) On the distribution of amino acid residues in transmembrane α-helix bundles. Proc Natl Acad Sci USA 92:4577–4581 Tamm LK, Hong H, Liang B (2004) Folding and assembly of β-barrel membrane proteins. Biochim Biophys Acta 1666:250–263 Hong H, Joh NH, Bowie JU, Tamm LK (2009) Methods for measuring the thermodynamic stability of membrane proteins. Methods Enzymol 455:213–236 Popot J-L, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037 van den Berg B, Clemons W M Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44 Osborne AR, Rapoport TA, van den Berg B (2005) Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol 21:529–550 Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117 Fauchère J-L, Pliška V (1983) Hydrophobic parameters π of amino acid side chains from the partitioning of N-acetyl-amino acid amides. Eur J Med Chem Chim Ther 18:369–375 Radzicka A, Pedersen L, Wolfenden R (1988) Influences of solvent water on protein folding: free energies of solvation of cis and trans peptides are nearly identical. Biochemistry 27:4538–4541 Wimley WC, Creamer TP, White SH (1996) Solvation energies of amino acid side chains and backbone in a family of host–guest pentapeptides. Biochemistry 35:5109–5124 Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848 Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381 Wiener MC, White SH (1992) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447 Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, Choe S (2005) NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307:1317–1321 Johansson AC, Lindahl E (2009) Protein contents in biological membranes can explain abnormal solvation of charged and polar residues. Proc Natl Acad Sci USA 106:15684–15689 von Heijne G (2007) Formation of transmembrane helices in vivo—is hydrophobicity all that matters? J Gen Physiol 129:353–356 White SH, von Heijne G (2008) How translocons select transmembrane helices. Annu Rev Biophys 37:23–42 Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030 White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365 White SH, von Heijne G (2005) Transmembrane helices before, during, and after insertion. Curr Opin Struct Biol 15:378–386 Ben-Tal N, Ben-Shaul A, Nicholls A, Honig B (1996) Free-energy determinants of α-helix insertion into lipid bilayers. Biophys J 70:1803–1812 Ben-Tal N, Honig B, Miller C, McLaughlin S (1997) Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J 73:1717–1727 Popot J-L, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922 Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589 Smith SO, Smith CS, Bormann BJ (1996) Strong hydrogen bonding interactions involving a buried glutamic acid in the transmembrane sequence of the neu/erbB-2 receptor. Nat Struct Biol 3:252–258 Therien AG, Grant FE, Deber CM (2001) Interhelical hydrogen bonds in the CFTR membrane domain. Nat Struct Biol 8:597–601 Zhou FX, Cocco MJ, Russ WP, Brunger AT, Engelman DM (2000) Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Biol 7:154–160 Choma C, Gratkowski H, Lear JD, DeGrado WF (2000) Asparagine-mediated self-association of a model transmembrane helix. Nat Struct Biol 7:161–166 Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the ζζ transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368 Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111:967–979 Adamian L, Liang J (2002) Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Proteins 47:209–218 Lau FW, Bowie JU (1997) A method for assessing the stability of a membrane protein. Biochemistry 36:5884–5892 Faham S, Yang D, Bare E, Yohannan S, Whitelegge JP, Bowie JU (2004) Side-chain contributions to membrane protein structure and stability. J Mol Biol 335:297–305 Joh NH, Min A, Faham S, Whitelegge JP, Yang D, Woods VL, Bowie JU (2008) Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 453:1266–1270 Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 44:97–179 Renthal R (2006) An unfolding story of helical transmembrane proteins. Biochemistry 45:14559–14566 Stanley AM, Fleming KG (2008) The process of folding proteins into membranes: challenges and progress. Arch Biochem Biophys 469:46–66 Senes A, Ubarretxena-Belandia I, Engelman DM (2001) The Cα–H···O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA 98:9056–9061 Arbely E, Arkin IT (2004) Experimental measurement of the strength of a Cα–H···O bond in a lipid bilayer. J Am Chem Soc 126:5362–5363 Yohannan S, Faham S, Yang D, Grosfeld D, Chamberlain AK, Bowie JU (2004) A Cα–H···O hydrogen bond in a membrane protein is not stabilizing. J Am Chem Soc 126:2284–2285 Partridge AW, Melnyk RA, Deber CM (2002) Polar residues in membrane domains of proteins: molecular basis for helix–helix association in a mutant CFTR transmembrane segment. Biochemistry 41:3647–3653 Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann B-J, Dempsey CE, Engelman DM (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane α-helices. J Biol Chem 267:7683–7689 Lemmon MA, Treutlein HR, Adams PD, Brünger AT, Engelman DM (1994) A dimerization motif for transmembrane α-helices. Nat Struct Biol 1:157–163 MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133 Brosig B, Langosch D (1998) The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues. Protein Sci 7:1052–1056 Doura AK, Kobus FJ, Dubrovsky L, Hibbard E, Fleming KG (2004) Sequence context modulates the stability of a GxxxG-mediated transmembrane helix–helix dimer. J Mol Biol 341:991–998 Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, Bowie JU (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci USA 102:14278–14283 Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. J Mol Biol 296:921–936 Crick F (1953) The packing of α-helices: simple coiled-coils. Acta Crystallogr 6:689–697 Langosch D, Heringa J (1998) Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 31:150–159 MacKenzie KR, Engelman DM (1998) Structure-based prediction of the stability of transmembrane helix–helix interactions: the sequence dependence of glycophorin A dimerization. Proc Natl Acad Sci USA 95:3583–3590 Helms V (2002) Attraction within the membrane. Forces behind transmembrane protein folding and supramolecular complex assembly. EMBO Rep 3:1133–1138 Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ (2000) Internal packing of helical membrane proteins. Proc Natl Acad Sci USA 97:5796–5801 Adamian L, Liang J (2001) Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. J Mol Biol 311:891–907 Zhang Y, Kulp DW, Lear JD, DeGrado WF (2009) Experimental and computational evaluation of forces directing the association of transmembrane helices. J Am Chem Soc 131:11341–11343 Hildebrand PW, Rother K, Goede A, Preissner R, Frömmel C (2005) Molecular packing and packing defects in helical membrane proteins. Biophys J 88:1970–1977 Joh NH, Oberai A, Yang D, Whitelegge JP, Bowie JU (2009) Similar energetic contributions of packing in the core of membrane and water-soluble proteins. J Am Chem Soc 131:10846–10847 Eriksson AE, Baase WA, Zhang X-J, Heinz DW, Blaber M, Baldwin EP, Matthews BW (1992) Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255:178–183 Oberai A, Joh NH, Pettit FK, Bowie JU (2009) Structural imperatives impose diverse evolutionary constraints on helical membrane proteins. Proc Natl Acad Sci USA 106:17747–17750 Unterreitmeier S, Fuchs A, Schäffler T, Heym RG, Frishman D, Langosch D (2007) Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs. J Mol Biol 374:705–718 Ridder A, Skupjen P, Unterreitmeier S, Langosch D (2005) Tryptophan supports interaction of transmembrane helices. J Mol Biol 354:894–902 Johnson RM, Hecht K, Deber CM (2007) Aromatic and cation–π interactions enhance helix–helix association in a membrane environment. Biochemistry 46:9208–9214 Adamian L, Nanda V, DeGrado WF, Liang J (2005) Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins. Proteins 59:496–509 Roth M, Arnoux B, Ducruix A, Reiss-Husson F (1991) Structure of the detergent phase and protein–detergent interactions in crystals of the wild-type (strain Y) Rhodobacter sphaeroides photochemical reaction center. Biochemistry 30:9403–9413 Wallin E, Tsukihara T, Yoshikawa S, von Heijne G, Elofsson A (1997) Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci 6:808–815 Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77 Yau W-M, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37:14713–14718 Hong H, Park S, Jimenez RH, Rinehart D, Tamm LK (2007) Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins. J Am Chem Soc 129:8320–8327 Ulmschneider MB, Sansom MS, Di Nola A (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–265 Gratkowski H, Lear JD, DeGrado WF (2001) Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci USA 98:880–885 Cymes GD, Ni Y, Grosman C (2005) Probing ion-channel pores one proton at a time. Nature 438:975–980 Chin C-N, von Heijne G (2000) Charge pair interactions in a model transmembrane helix in the ER membrane. J Mol Biol 303:1–5 King SC, Hansen CL, Wilson TH (1991) The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochim Biophys Acta 1062:177–186 Dunten RL, Sahin-Tóth M, Kaback HR (1993) Role of the charge pair aspartic acid-237–lysine-358 in the lactose permease of Escherichia coli. Biochemistry 32:3139–3145 Long SB, Campbell EB, MacKinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908 von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918 von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 5:3021–3027 Hope MJ, Cullis PR (1980) Effects of divalent cations and pH on phosphatidylserine model membranes: a 31P NMR study. Biochem Biophys Res Commun 92:846–852 Cevc G, Seddon JM, Hartung R, Eggert W (1988) Phosphatidylcholine–fatty acid membranes. I. Effects of protonation, salt concentration, temperature and chain-length on the colloidal and phase properties of mixed vesicles, bilayers and nonlamellar structures. Biochim Biophys Acta 940:219–240 Brockman H (1994) Dipole potential of lipid membranes. Chem Phys Lipids 73:57–79 Clarke RJ, Lüpfert C (1999) Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys J 76:2614–2624 Zhou J, Thorpe IF, Izvekov S, Voth GA (2007) Coarse-grained peptide modeling using a systematic multiscale approach. Biophys J 92:4289–4303 Rand RP, Sengupta S (1972) Cardiolipin forms hexagonal structures with divalent cations. Biochim Biophys Acta 255:484–492 Morein S, Andersson A-S, Rilfors L, Lindblom G (1996) Wild-type Escherichia coli cells regulate the membrane lipid composition in a “window” between gel and non-lamellar structures. J Biol Chem 271:6801–6809 McIntosh TJ (1996) Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. Chem Phys Lipids 81:117–131 Parsegian VA, Rand RP (1983) Membrane interaction and deformation. Ann N Y Acad Sci 416:1–12 Zhao W, Róg T, Gurtovenko AA, Vattulainen I, Karttunen M (2007) Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. Biophys J 92:1114–1124 Coster HG, Simons R (1968) Energy of formation of bimolecular lipid membranes. Biochim Biophys Acta 163:234–239 Jähnig F (1996) What is the surface tension of a lipid bilayer membrane? Biophys J 71:1348–1349 Cantor RS (1997) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344 Marsh D (2007) Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys J 93:3884–3899 Evans EA, Waugh R (1977) Mechano-chemistry of closed, vesicular membrane systems. J Colloid Interf Sci 60:286–298 Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286:183–223 Chiu S-W, Clark M, Balaji V, Subramaniam S, Scott HL, Jakobsson E (1995) Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J 69:1230–1245 Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725 Frink LJ, Frischknecht AL (2005) Density functional theory approach for coarse-grained lipid bilayers. Phys Rev E: Stat Nonlinear Soft Matter Phys 72:041923 Terama E, Ollila OH, Salonen E, Rowat AC, Trandum C, Westh P, Patra M, Karttunen M, Vattulainen I (2008) Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. J Phys Chem B 112:4131–4139 Langner M, Hui SW (1999) Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellar-hexagonal transition of phosphatidylethanolamine bilayers. Biochim Biophys Acta 1415:323–330 Templer RH, Castle AJ, Curran AR, Rumbles G, Klug DR (1999) Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylcholine. Faraday Discuss 111:41–53 Kusube M, Tamai N, Matsuki H, Kaneshina S (2005) Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan. Biophys Chem 117:199–206 Boldyrev IA, Zhai X, Momsen MM, Brockman HL, Brown RE, Molotkovsky JG (2007) New BODIPY lipid probes for fluorescence studies of membranes. J Lipid Res 48:1518–1532 Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639 Ly HV, Longo ML (2004) The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys J 87:1013–1033 Seddon JM, Cevc G, Kaye RD, Marsh D (1984) X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines. Biochemistry 23:2634–2644 McIntosh TJ, Simon SA (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25:4948–4952 Lewis RN, McElhaney RN (1993) Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. Biophys J 64:1081–1096 Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87 Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339 van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288 Bezrukov SM (2000) Functional consequences of lipid packing stress. Curr Opin Colloid Interf Sci 5:237–243 Cantor RS (1999) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56 Stankowski S, Schwarz G (1989) Lipid dependence of peptide-membrane interactions. Bilayer affinity and aggregation of the peptide alamethicin. FEBS Lett 250:556–560 Lewis JR, Cafiso DS (1999) Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids. Biochemistry 38:5932–5938 Keller SL, Bezrukov SM, Gruner SM, Tate MW, Vodyanoy I, Parsegian VA (1993) Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys J 65:23–27 van Dalen A, Hegger S, Killian JA, de Kruijff B (2002) Influence of lipids on membrane assembly and stability of the potassium channel KcsA. FEBS Lett 525:33–38 van den Brink-van der Laan E, Chupin V, Killian JA, de Kruijff B (2004) Stability of KcsA tetramer depends on membrane lateral pressure. Biochemistry 43:4240–4250 Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113 Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101:4083–4088 Johannsson A, Keightley CA, Smith GA, Richards CD, Hesketh TR, Metcalfe JC (1981) The effect of bilayer thickness and n-alkanes on the activity of the (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum. J Biol Chem 256:1643–1650 Caffrey M, Feigenson GW (1981) Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics. Biochemistry 20:1949–1961 Montecucco C, Smith GA, Dabbeni-sala F, Johannsson A, Galante YM, Bisson R (1982) Bilayer thickness and enzymatic activity in the mitochondrial cytochrome c oxidase and ATPase complex. FEBS Lett 144:145–148 Dumas F, Tocanne J-F, Leblanc G, Lebrun MC (2000) Consequences of hydrophobic mismatch between lipids and melibiose permease on melibiose transport. Biochemistry 39:4846–4854 Brown MF (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180 Jensen MØ, Mouritsen OG (2004) Lipids do influence protein function—the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666:205–226 Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46:141–153 Killian JA (1998) Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta 1376:401–415 Williamson IM, Alvis SJ, East JM, Lee AG (2002) Interactions of phospholipids with the potassium channel KcsA. Biophys J 83:2026–2038 de Planque MR, Goormaghtigh E, Greathouse DV, Koeppe II RE, Kruijtzer JA, Liskamp RM, de Kruijff B, Killian JA (2001) Sensitivity of single membrane-spanning α-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 40:5000–5010 Powl AM, East JM, Lee AG (2003) Lipid–protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry 42:14306–14317 Sukharev S, Betanzos M, Chiang C-S, Guy HR (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720–724 Dumas F, Lebrun MC, Tocanne J-F (1999) Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? FEBS Lett 458:271–277 Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91:4464–4477 Lewis BA, Engelman DM (1983) Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. J Mol Biol 166:203–210 Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18 Seddon AM, Lorch M, Ces O, Templer RH, Macrae F, Booth PJ (2008) Phosphatidylglycerol lipids enhance folding of an α helical membrane protein. J Mol Biol 380:548–556 Awasthi YC, Chuang TF, Keenan TW, Crane FL (1971) Tightly bound cardiolipin in cytochrome oxidase. Biochim Biophys Acta 226:42–52 Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163 Sedlák E, Robinson NC (1999) Phospholipase A2 digestion of cardiolipin bound to bovine cytochrome c oxidases alters both activity and quaternary structure. Biochemistry 38:14966–14972 Abramovitch DA, Marsh D, Powell GL (1990) Activation of beef-heart cytochrome c oxidase by cardiolipin and analogues of cardiolipin. Biochim Biophys Acta 1020:34–42 Fyfe PK, McAuley KE, Roszak AW, Isaacs NW, Cogdell RJ, Jones MR (2001) Probing the interface between membrane proteins and membrane lipids by X-ray crystallography. Trends Biochem Sci 26:106–112 Hodgkin AL, Huxley AF (1952) Propagation of electrical signals along giant nerve fibres. Proc R Soc London, Ser B 140:177–183 Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41 Jiang Q-X, Wang D-N, MacKinnon R (2004) Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation. Nature 430:806–810 Freites JA, Tobias DJ, von Heijne G, White SH (2005) Interface connections of a transmembrane voltage sensor. Proc Natl Acad Sci USA 102:15059–15064 Schmidt D, Jiang Q-X, MacKinnon R (2006) Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444:775–779 Xu Y, Ramu Y, Lu Z (2008) Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451:826–829 Junge F, Schneider B, Reckel S, Schwarz D, Dötsch V, Bernhard F (2008) Large-scale production of functional membrane proteins. Cell Mol Life Sci 65:1729–1755 Nagy JK, Lonzer WL, Sanders CR (2001) Kinetic study of folding and misfolding of diacylglycerol kinase in model membranes. Biochemistry 40:8971–8980 Roepe PD, Kaback HR (1989) Characterization and functional reconstitution of a soluble form of the hydrophobic membrane protein lac permease from Escherichia coli. Proc Natl Acad Sci USA 86:6087–6091 Roepe PD, Kaback HR (1990) Isolation and functional reconstitution of soluble melibiose permease from Escherichia coli. Biochemistry 29:2572–2577 Kleinschmidt JH, Wiener MC, Tamm LK (1999) Outer membrane protein A of E. coli folds into detergent micelles, but not in the presence of monomeric detergent. Protein Sci 8:2065–2071 Hong H, Tamm LK (2004) Elastic coupling of integral membrane protein stability to lipid bilayer forces. Proc Natl Acad Sci USA 101:4065–4070 Hong H, Szabo G, Tamm LK (2006) Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening. Nat Chem Biol 2:627–635 Otzen DE (2003) Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. J Mol Biol 330:641–649 Curnow P, Booth PJ (2007) Combined kinetic and thermodynamic analysis of α-helical membrane protein unfolding. Proc Natl Acad Sci USA 104:18970–18975 Curnow P, Booth PJ (2009) The transition state for integral membrane protein folding. Proc Natl Acad Sci USA 106:773–778 Chang J-Y (2009) Structural heterogeneity of 6 M GdmCl-denatured proteins: implications for the mechanism of protein folding. Biochemistry 48:9340–9346 Dill KA, Shortle D (1991) Denatured states of proteins. Annu Rev Biochem 60:795–825 Shortle D, Ackerman MS (2001) Persistence of native-like topology in a denatured protein in 8 M urea. Science 293:487–489 Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293:1499–1503 Ptitsyn OB (1994) Kinetic and equilibrium intermediates in protein folding. Protein Eng 7:593–596